×

The vector-like twin Higgs. (English) Zbl 1388.81969

Summary: We present a version of the twin Higgs mechanism with vector-like top partners. In this setup all gauge anomalies automatically cancel, even without twin leptons. The matter content of the most minimal twin sector is therefore just two twin tops and one twin bottom. The LHC phenomenology, illustrated with two example models, is dominated by twin glueball decays, possibly in association with Higgs bosons. We further construct an explicit four-dimensional UV completion and discuss a variety of UV completions relevant for both vector-like and fraternal twin Higgs models.

MSC:

81V35 Nuclear physics

Software:

SARAH

References:

[1] Z. Chacko, H.-S. Goh and R. Harnik, The Twin Higgs: Natural electroweak breaking from mirror symmetry, Phys. Rev. Lett.96 (2006) 231802 [hep-ph/0506256] [INSPIRE].
[2] Z. Chacko, H.-S. Goh and R. Harnik, A Twin Higgs model from left-right symmetry, JHEP01 (2006) 108 [hep-ph/0512088] [INSPIRE].
[3] N. Craig, S. Knapen and P. Longhi, The Orbifold Higgs, JHEP03 (2015) 106 [arXiv:1411.7393] [INSPIRE]. · Zbl 1388.81142 · doi:10.1007/JHEP03(2015)106
[4] N. Craig, S. Knapen and P. Longhi, Neutral Naturalness from Orbifold Higgs Models, Phys. Rev. Lett.114 (2015) 061803 [arXiv:1410.6808] [INSPIRE]. · doi:10.1103/PhysRevLett.114.061803
[5] M. Geller and O. Telem, Holographic Twin Higgs Model, Phys. Rev. Lett.114 (2015) 191801 [arXiv:1411.2974] [INSPIRE]. · doi:10.1103/PhysRevLett.114.191801
[6] R. Barbieri, D. Greco, R. Rattazzi and A. Wulzer, The Composite Twin Higgs scenario, JHEP08 (2015) 161 [arXiv:1501.07803] [INSPIRE]. · Zbl 1388.81957 · doi:10.1007/JHEP08(2015)161
[7] M. Low, A. Tesi and L.-T. Wang, Twin Higgs mechanism and a composite Higgs boson, Phys. Rev.D 91 (2015) 095012 [arXiv:1501.07890] [INSPIRE].
[8] N. Craig, A. Katz, M. Strassler and R. Sundrum, Naturalness in the Dark at the LHC, JHEP07 (2015) 105 [arXiv:1501.05310] [INSPIRE]. · doi:10.1007/JHEP07(2015)105
[9] S. Dimopoulos and G.F. Giudice, Naturalness constraints in supersymmetric theories with nonuniversal soft terms, Phys. Lett.B 357 (1995) 573 [hep-ph/9507282] [INSPIRE].
[10] A.G. Cohen, D.B. Kaplan and A.E. Nelson, The More minimal supersymmetric standard model, Phys. Lett.B 388 (1996) 588 [hep-ph/9607394] [INSPIRE].
[11] G. Burdman, Z. Chacko, R. Harnik, L. de Lima and C.B. Verhaaren, Colorless Top Partners, a 125 GeV Higgs, and the Limits on Naturalness, Phys. Rev.D 91 (2015) 055007 [arXiv:1411.3310] [INSPIRE].
[12] C. Csáki, M. Geller, O. Telem and A. Weiler, The Flavor of the Composite Twin Higgs, arXiv:1512.03427 [INSPIRE].
[13] J.E. Juknevich, Pure-glue hidden valleys through the Higgs portal, JHEP08 (2010) 121 [arXiv:0911.5616] [INSPIRE]. · Zbl 1290.81216 · doi:10.1007/JHEP08(2010)121
[14] J.E. Juknevich, D. Melnikov and M.J. Strassler, A Pure-Glue Hidden Valley I. States and Decays, JHEP07 (2009) 055 [arXiv:0903.0883] [INSPIRE].
[15] D. Curtin and C.B. Verhaaren, Discovering Uncolored Naturalness in Exotic Higgs Decays, JHEP12 (2015) 072 [arXiv:1506.06141] [INSPIRE]. · doi:10.1007/JHEP12(2015)072
[16] C. Csáki, E. Kuflik, S. Lombardo and O. Slone, Searching for displaced Higgs boson decays, Phys. Rev.D 92 (2015) 073008 [arXiv:1508.01522] [INSPIRE].
[17] J.D. Clarke, Constraining portals with displaced Higgs decay searches at the LHC, JHEP10 (2015) 061 [arXiv:1505.00063] [INSPIRE]. · doi:10.1007/JHEP10(2015)061
[18] M.R. Buckley, V. Halyo and P. Lujan, Don’t Miss the Displaced Higgs at the LHC Again, arXiv:1405.2082 [INSPIRE].
[19] Y. Cui and B. Shuve, Probing Baryogenesis with Displaced Vertices at the LHC, JHEP02 (2015) 049 [arXiv:1409.6729] [INSPIRE]. · doi:10.1007/JHEP02(2015)049
[20] F. Staub, SARAH 4 : A tool for (not only SUSY) model builders, Comput. Phys. Commun.185 (2014) 1773 [arXiv:1309.7223] [INSPIRE]. · Zbl 1348.81026 · doi:10.1016/j.cpc.2014.02.018
[21] I. Garcıa García, R. Lasenby and J. March-Russell, Twin Higgs WIMP Dark Matter, Phys. Rev.D 92 (2015) 055034 [arXiv:1505.07109] [INSPIRE].
[22] N. Arkani-Hamed, A.G. Cohen and H. Georgi, (De)constructing dimensions, Phys. Rev. Lett.86 (2001) 4757 [hep-th/0104005] [INSPIRE].
[23] N. Arkani-Hamed, A.G. Cohen and H. Georgi, Twisted supersymmetry and the topology of theory space, JHEP07 (2002) 020 [hep-th/0109082] [INSPIRE].
[24] C. Csáki, J. Erlich, C. Grojean and G.D. Kribs, 4 − D constructions of supersymmetric extra dimensions and gaugino mediation, Phys. Rev.D 65 (2002) 015003 [hep-ph/0106044] [INSPIRE].
[25] C. Csáki, G.D. Kribs and J. Terning, 4 − D models of Scherk-Schwarz GUT breaking via deconstruction, Phys. Rev.D 65 (2002) 015004 [hep-ph/0107266] [INSPIRE].
[26] H.C. Cheng, D.E. Kaplan, M. Schmaltz and W. Skiba, Deconstructing gaugino mediation, Phys. Lett.B 515 (2001) 395 [hep-ph/0106098] [INSPIRE]. · Zbl 0971.81552
[27] T. Kobayashi, N. Maru and K. Yoshioka, 4 − D construction of bulk supersymmetry breaking, Eur. Phys. J.C 29 (2003) 277 [hep-ph/0110117] [INSPIRE]. · Zbl 1030.81519
[28] A. Falkowski, C. Grojean and S. Pokorski, Soft electroweak breaking from hard supersymmetry breaking, Phys. Lett.B 535 (2002) 258 [hep-ph/0203033] [INSPIRE].
[29] A. Iqbal and V.S. Kaplunovsky, Quantum deconstruction of a 5 − D SYM and its moduli space, JHEP05 (2004) 013 [hep-th/0212098] [INSPIRE]. · doi:10.1088/1126-6708/2004/05/013
[30] A.G. Cohen, D.B. Kaplan, E. Katz and M. Ünsal, Supersymmetry on a Euclidean space-time lattice. 1. A Target theory with four supercharges, JHEP08 (2003) 024 [hep-lat/0302017] [INSPIRE].
[31] E. Dudas, A. Falkowski and S. Pokorski, Deconstructed U(1) and supersymmetry breaking, Phys. Lett.B 568 (2003) 281 [hep-th/0303155] [INSPIRE]. · Zbl 1094.81553 · doi:10.1016/j.physletb.2003.06.038
[32] E. Di Napoli and V.S. Kaplunovsky, Quantum deconstruction of 5D SQCD, JHEP03 (2007) 092 [hep-th/0611085] [INSPIRE]. · doi:10.1088/1126-6708/2007/03/092
[33] N. Craig and K. Howe, Doubling down on naturalness with a supersymmetric twin Higgs, JHEP03 (2014) 140 [arXiv:1312.1341] [INSPIRE]. · doi:10.1007/JHEP03(2014)140
[34] S. Chang, L.J. Hall and N. Weiner, A Supersymmetric twin Higgs, Phys. Rev.D 75 (2007) 035009 [hep-ph/0604076] [INSPIRE].
[35] A. Falkowski, S. Pokorski and M. Schmaltz, Twin SUSY, Phys. Rev.D 74 (2006) 035003 [hep-ph/0604066] [INSPIRE].
[36] N. Arkani-Hamed, A.G. Cohen and H. Georgi, Accelerated unification, hep-th/0108089 [INSPIRE].
[37] N. Craig, S. Dimopoulos and T. Gherghetta, Split families unified, JHEP04 (2012) 116 [arXiv:1203.0572] [INSPIRE]. · doi:10.1007/JHEP04(2012)116
[38] A. Hebecker and J. March-Russell, A Minimal S1/(Z2 × Z2′) orbifold GUT, Nucl. Phys.B 613 (2001) 3 [hep-ph/0106166] [INSPIRE]. · Zbl 0970.81094
[39] G. Burdman, Z. Chacko, H.-S. Goh and R. Harnik, Folded supersymmetry and the LEP paradox, JHEP02 (2007) 009 [hep-ph/0609152] [INSPIRE].
[40] H.-C. Cheng, S. Jung, E. Salvioni and Y. Tsai, Exotic Quarks in Twin Higgs Models, JHEP03 (2016) 074 [arXiv:1512.02647] [INSPIRE]. · doi:10.1007/JHEP03(2016)074
[41] N. Craig and A. Katz, The Fraternal WIMP Miracle, JCAP10 (2015) 054 [arXiv:1505.07113] [INSPIRE]. · doi:10.1088/1475-7516/2015/10/054
[42] Y. Hochberg, E. Kuflik, T. Volansky and J.G. Wacker, Mechanism for Thermal Relic Dark Matter of Strongly Interacting Massive Particles, Phys. Rev. Lett.113 (2014) 171301 [arXiv:1402.5143] [INSPIRE]. · doi:10.1103/PhysRevLett.113.171301
[43] Y. Hochberg, E. Kuflik, H. Murayama, T. Volansky and J.G. Wacker, Model for Thermal Relic Dark Matter of Strongly Interacting Massive Particles, Phys. Rev. Lett.115 (2015) 021301 [arXiv:1411.3727] [INSPIRE]. · doi:10.1103/PhysRevLett.115.021301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.