×

Uniform boundedness principles for Sobolev maps into manifolds. (English) Zbl 1418.46035

Summary: Given a connected Riemannian manifold \(\mathcal{N}\), an \(m\)-dimensional Riemannian manifold \(\mathcal{M}\) which is either compact or the Euclidean space, \(p \in [1, + \infty)\) and \(s \in(0, 1]\), we establish, for the problems of surjectivity of the trace, of weak-bounded approximation, of lifting and of superposition, that qualitative properties satisfied by every map in a nonlinear Sobolev space \(W^{s, p}(\mathcal{M}, \mathcal{N})\) imply corresponding uniform quantitative bounds. This result is a nonlinear counterpart of the classical Banach-Steinhaus uniform boundedness principle in linear Banach spaces.

MSC:

46T20 Continuous and differentiable maps in nonlinear functional analysis
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
46T10 Manifolds of mappings
58D15 Manifolds of mappings

References:

[1] Adams, R.; Fournier, J., Sobolev Spaces, Pure and Applied Mathematics, vol. 140 (2003), Elsevier/Academic Press: Elsevier/Academic Press Amsterdam · Zbl 1098.46001
[2] Allaoui, S. E., Remarques sur le calcul symbolique dans certains espaces de Besov à valeurs vectorielles, Ann. Math. Blaise Pascal, 16, 2, 399-429 (2009) · Zbl 1182.46019
[3] Ambrosio, L.; Fusco, N.; Pallara, D., Functions of Bounded Variation and Free Discontinuity Problems, vol. 254 (2000), Clarendon Press Oxford: Clarendon Press Oxford Oxford · Zbl 0957.49001
[4] Appell, J.; Zabrejko, P. P., Nonlinear Superposition Operators, Cambridge Tracts in Mathematics, vol. 95 (1990), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0701.47041
[5] Ball, J. M.; Zarnescu, A., Orientability and energy minimization in liquid crystal models, Arch. Ration. Mech. Anal., 202, 2, 493-535 (2011) · Zbl 1263.76010
[6] Banach, S., Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundam. Math., 3, 1, 133-181 (1922) · JFM 48.0201.01
[7] Bethuel, F., A characterization of maps in \(H^1(B^3, S^2)\) which can be approximated by smooth maps, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 7, 4, 269-286 (1990) · Zbl 0708.58004
[8] Bethuel, F., The approximation problem for Sobolev maps between two manifolds, Acta Math., 167, 3-4, 153-206 (1991) · Zbl 0756.46017
[9] Bethuel, F., A new obstruction to the extension problem for Sobolev maps between manifolds, J. Fixed Point Theory Appl., 15, 1, 155-183 (2014) · Zbl 1321.46035
[10] Bethuel, F., A counterexample to the weak density of smooth maps between manifolds in Sobolev spaces · Zbl 1433.58009
[11] Bethuel, F.; Brezis, H.; Coron, J.-M., Relaxed energies for harmonic maps, (Variational Methods. Variational Methods, Paris, 1988. Variational Methods. Variational Methods, Paris, 1988, Progr. Nonlinear Differential Equations Appl., vol. 4 (1990), Birkhäuser: Birkhäuser Boston, MA), 37-52 · Zbl 0793.58011
[12] Bethuel, F.; Chiron, D., Some questions related to the lifting problem in Sobolev spaces, (Perspectives in Nonlinear Partial Differential Equations. Perspectives in Nonlinear Partial Differential Equations, Contemp. Math., vol. 446 (2007), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 125-152 · Zbl 1201.46029
[13] Bethuel, F.; Demengel, F., Extensions for Sobolev mappings between manifolds, Calc. Var. Partial Differ. Equ., 3, 4, 475-491 (1995) · Zbl 0846.46021
[14] Bourdaud, G., Fonctions qui opèrent sur les espaces de Besov et de Triebel, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 10, 4, 413-422 (1993) · Zbl 0741.46010
[15] Bourdaud, G.; Sickel, W., Composition operators on function spaces with fractional order of smoothness, (Harmonic Analysis and Nonlinear Partial Differential Equations. Harmonic Analysis and Nonlinear Partial Differential Equations, RIMS Kôkyûroku Bessatsu, vol. B26 (2011), Res. Inst. Math. Sci. (RIMS): Res. Inst. Math. Sci. (RIMS) Kyoto), 93-132 · Zbl 1238.46023
[16] Bourgain, J.; Brezis, H., On the equation \(div Y = f\) and application to control of phases, J. Am. Math. Soc., 16, 2, 393-426 (2003) · Zbl 1075.35006
[17] Bourgain, J.; Brezis, H.; Mironescu, P., Lifting in Sobolev spaces, J. Anal. Math., 80, 37-86 (2000) · Zbl 0967.46026
[18] Bourgain, J.; Brezis, H.; Mironescu, P., On the structure of the Sobolev space \(H^{1 / 2}\) with values into the circle, C. R. Acad. Sci., Sér. 1 Math., 331, 2, 119-124 (2000) · Zbl 0970.35069
[19] Bourgain, J.; Brezis, H.; Mironescu, P., \(H^{1 / 2}\) maps with values into the circle: minimal connections, lifting, and the Ginzburg-Landau equation, Publ. Math. Inst. Hautes Études Sci., 99, 1-115 (2004) · Zbl 1051.49030
[20] Bourgain, J.; Brezis, H.; Mironescu, P., Lifting, degree, and distributional Jacobian revisited, Commun. Pure Appl. Math., 58, 4, 529-551 (2005) · Zbl 1077.46023
[21] Bousquet, P.; Ponce, A. C.; Van Schaftingen, J., Density of smooth maps for fractional Sobolev spaces \(W^{s, p}\) into \(ℓ\) simply connected manifolds when \(s \geqslant 1\), Confluentes Math., 5, 2, 3-22 (2013) · Zbl 1314.58005
[22] Bousquet, P.; Ponce, A. C.; Van Schaftingen, J., Strong density for higher order Sobolev spaces into compact manifolds, J. Eur. Math. Soc., 17, 4, 763-817 (2015) · Zbl 1318.58006
[23] Bousquet, P.; Ponce, A. C.; Van Schaftingen, J., Density of bounded maps in Sobolev spaces into complete manifolds, Ann. Mat. Pura Appl. (4), 196, 6, 2261-2301 (2017) · Zbl 1380.58007
[24] Bousquet, P.; Ponce, A. C.; Van Schaftingen, J., Weak approximation by bounded Sobolev maps with values into complete manifolds, C. R. Math. Acad. Sci. Paris, 356, 3, 264-271 (2018) · Zbl 1390.58008
[25] Brezis, H., Relaxed energies for harmonic maps and liquid crystals, Ric. Mat., 40, Suppl., 163-173 (1991) · Zbl 0800.49072
[26] Brezis, H., New energies for harmonic maps and liquid crystals, (Functional Analysis and Related Topics. Functional Analysis and Related Topics, Kyoto, 1991. Functional Analysis and Related Topics. Functional Analysis and Related Topics, Kyoto, 1991, Lecture Notes in Math., vol. 1540 (1993), Springer: Springer Berlin), 11-24 · Zbl 0818.49025
[27] Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext (2011), Springer: Springer New York · Zbl 1220.46002
[28] Brezis, H.; Coron, J.-M.; Lieb, E. H., Harmonic maps with defects, Commun. Math. Phys., 107, 4, 649-705 (1986) · Zbl 0608.58016
[29] Brezis, H.; Li, Y., Topology and Sobolev spaces, J. Funct. Anal., 183, 2, 321-369 (2001) · Zbl 1001.46019
[30] Brezis, H.; Mironescu, P., Density in \(W^{s, p}(\Omega; N)\), J. Funct. Anal., 269, 7, 2045-2109 (2015) · Zbl 1516.46021
[31] Convent, A.; Van Schaftingen, J., Intrinsic co-local weak derivatives and Sobolev spaces between manifolds, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), 16, 1, 97-128 (2016) · Zbl 1343.58005
[32] Convent, A.; Van Schaftingen, J., Higher order weak differentiability and Sobolev spaces between manifolds, Adv. Calc. Var. (2018), in press
[33] DiBenedetto, E., Real Analysis, Birkhäuser Advanced Texts: Basler Lehrbücher (2016), Birkhäuser/Springer: Birkhäuser/Springer New York · Zbl 1353.26001
[34] Dyda, B., A fractional order Hardy inequality, Ill. J. Math., 48, 2, 575-588 (2004) · Zbl 1068.26014
[35] Evans, L. C.; Gariepy, R. F., Measure Theory and Fine Properties of Functions, Textbooks in Mathematics (2015), CRC Press · Zbl 1310.28001
[36] Ferry, S.; Weinberger, S., Quantitative algebraic topology and Lipschitz homotopy, Proc. Natl. Acad. Sci. USA, 110, 48, 19246-19250 (2013) · Zbl 1302.57060
[37] Gromov, M., Quantitative homotopy theory, (Prospects in Mathematics. Prospects in Mathematics, Princeton, NJ, 1996 (1999), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 45-49 · Zbl 0927.57022
[38] Hahn, H., Über folgen linearer Operationen, Monatshefte Math. Phys., 32, 3-88 (1922) · JFM 48.0473.01
[39] Hajłasz, P., Approximation of Sobolev mappings, Nonlinear Anal., 22, 12, 1579-1591 (1994) · Zbl 0820.46028
[40] Hang, F.; Lin, F., Topology of Sobolev mappings. II, Acta Math., 191, 1, 55-107 (2003) · Zbl 1061.46032
[41] Hang, F.; Lin, F., Topology of Sobolev mappings. III, Commun. Pure Appl. Math., 56, 10, 1383-1415 (2003) · Zbl 1038.46026
[42] Hardt, R.; Lin, F.-H., Mappings minimizing the \(L^p\) norm of the gradient, Commun. Pure Appl. Math., 40, 5, 555-588 (1987) · Zbl 0646.49007
[43] Igari, S., Sur les fonctions qui opèrent sur l’espace \(\hat{A}^2\), Ann. Inst. Fourier (Grenoble), 15, 2, 525-536 (1965) · Zbl 0132.09701
[44] Krasnosel’skii, M. A., Topological Methods in the Theory of Nonlinear Integral Equations (1964), Macmillan: Macmillan New York · Zbl 0111.30303
[45] Marcus, M.; Mizel, V. J., Complete characterization of functions which act, via superposition, on Sobolev spaces, Trans. Am. Math. Soc., 251, 187-218 (1979) · Zbl 0417.46035
[46] Mazowiecka, K.; Strzelecki, P., The Lavrentiev gap phenomenon for harmonic maps into spheres holds on a dense set of zero degree boundary data, Adv. Calc. Var., 10, 3, 303-314 (2017) · Zbl 1369.58012
[47] Merlet, B., Two remarks on liftings of maps with values into \(S^1\), C. R. Math. Acad. Sci. Paris, 343, 7, 467-472 (2006) · Zbl 1115.46027
[48] Mironescu, P., Sobolev maps on manifolds: degree, approximation, lifting, Contemp. Math., 446, 413-436 (2007) · Zbl 1201.46032
[49] Mironescu, P., Lifting default for \(S^1\)-valued maps, C. R. Math. Acad. Sci. Paris, 346, 19-20, 1039-1044 (2008) · Zbl 1168.46305
[50] P. Mironescu, Lifting of \(S^1\); P. Mironescu, Lifting of \(S^1\) · Zbl 1168.46305
[51] Mironescu, P., Decomposition of \(S^1\)-valued maps in Sobolev spaces, C. R. Math. Acad. Sci. Paris, 348, 13-14, 743-746 (2010) · Zbl 1205.46017
[52] Mironescu, P., Superposition with subunitary powers in Sobolev spaces, C. R. Math. Acad. Sci. Paris, 353, 6, 483-487 (2015) · Zbl 1339.46036
[53] Mironescu, P.; Molnar, I., Phases of unimodular complex valued maps: optimal estimates, the factorization method, and the sum-intersection property of Sobolev spaces, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 32, 5, 965-1013 (2015) · Zbl 1339.46037
[54] Mucci, D., Maps into projective spaces: liquid crystal and conformal energies, Discrete Contin. Dyn. Syst., Ser. B, 17, 2, 597-635 (2012) · Zbl 1235.49087
[55] Nash, J., The imbedding problem for Riemannian manifolds, Ann. Math. (2), 63, 20-63 (1956) · Zbl 0070.38603
[56] Nguyen, H.-M., Inequalities related to liftings and applications, C. R. Math. Acad. Sci. Paris, 346, 17-18, 957-962 (2008) · Zbl 1157.46016
[57] Pakzad, M. R., Weak density of smooth maps in \(W^{1, 1}(M, N)\) for non-abelian \(\pi_1(N)\), Ann. Glob. Anal. Geom., 23, 1, 1-12 (2003) · Zbl 1040.58002
[58] Pakzad, M. R.; Rivière, T., Weak density of smooth maps for the Dirichlet energy between manifolds, Geom. Funct. Anal., 13, 1, 223-257 (2003) · Zbl 1028.58008
[59] Petrache, M.; Van Schaftingen, J., Controlled singular extension of critical trace Sobolev maps from spheres to compact manifolds, Int. Math. Res. Not., 2017, 12, 3467-3683 (2017) · Zbl 1405.58002
[60] Rivière, T., Dense subsets of \(H^{1 / 2}(S^2, S^1)\), Ann. Glob. Anal. Geom., 18, 5, 517-528 (2000) · Zbl 0960.35022
[61] Schoen, R.; Uhlenbeck, K., Boundary regularity and the Dirichlet problem for harmonic maps, J. Differ. Geom., 18, 2, 253-268 (1983) · Zbl 0547.58020
[62] Sokal, A. D., A really simple elementary proof of the uniform boundedness theorem, Am. Math. Mon., 118, 5, 450-452 (2011) · Zbl 1223.46022
[63] Triebel, H., Theory of Function Spaces, Monographs in Mathematics, vol. 78 (1983), Birkhäuser: Birkhäuser Basel · Zbl 0546.46028
[64] Willem, M., Functional Analysis, Cornerstones (2013), Birkhäuser: Birkhäuser New York, Fundamentals and applications · Zbl 1284.46001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.