×

Fisher information as a probe of spacetime structure: relativistic quantum metrology in (A)dS. (English) Zbl 1466.83028

Summary: Relativistic quantum metrology studies the maximal achievable precision for estimating a physical quantity when both quantum and relativistic effects are taken into account. We study the relativistic quantum metrology of temperature in (3+1)-dimensional de Sitter and anti-de Sitter space. Using Unruh-DeWitt detectors coupled to a massless scalar field as probes and treating them as open quantum systems, we compute the Fisher information for estimating temperature. We investigate the effect of acceleration in dS, and the effect of boundary condition in AdS. We find that the phenomenology of the Fisher information in the two spacetimes can be unified, and analyze its dependence on temperature, detector energy gap, curvature, interaction time, and detector initial state. We then identify estimation strategies that maximize the Fisher information and therefore the precision of estimation.

MSC:

83C45 Quantization of the gravitational field
81P15 Quantum measurement theory, state operations, state preparations
81P45 Quantum information, communication, networks (quantum-theoretic aspects)

References:

[1] Mann, RB; Ralph, TC, Relativistic quantum information, Class. Quant. Grav., 29, 220301 (2012) · doi:10.1088/0264-9381/29/22/220301
[2] Giovannetti, V.; Lloyd, S.; Maccone, L., Advances in quantum metrology, Nature Photon., 5, 222 (2011) · doi:10.1038/nphoton.2011.35
[3] Caves, CM, Quantum Mechanical Noise in an Interferometer, Phys. Rev. D, 23, 1693 (1981) · doi:10.1103/PhysRevD.23.1693
[4] Grote, H.; Danzmann, K.; Dooley, KL; Schnabel, R.; Slutsky, J.; Vahlbruch, H., First Long-Term Application of Squeezed States of Light in a Gravitational-Wave Observatory, Phys. Rev. Lett., 110, 181101 (2013) · doi:10.1103/PhysRevLett.110.181101
[5] Demkowicz-Dobrzański, R.; Maccone, L., Using entanglement against noise in quantum metrology, Phys. Rev. Lett., 113, 250801 (2014) · doi:10.1103/PhysRevLett.113.250801
[6] Ahmadi, M.; Bruschi, DE; Fuentes, I., Quantum metrology for relativistic quantum fields, Phys. Rev. D, 89, 065028 (2014) · doi:10.1103/PhysRevD.89.065028
[7] Ahmadi, M.; Bruschi, DE; Sabín, C.; Adesso, G.; Fuentes, I., Relativistic quantum metrology: Exploiting relativity to improve quantum measurement technologies, Sci. Rep., 4, 4996 (2014) · doi:10.1038/srep04996
[8] Aspachs, M.; Adesso, G.; Fuentes, I., Optimal quantum estimation of the Unruh-Hawking effect, Phys. Rev. Lett., 105, 151301 (2010) · doi:10.1103/PhysRevLett.105.151301
[9] D. Borim, L. C. Céleri and V. I. Kiosses, Precision in estimating Unruh temperature, arXiv:2001.09085 [INSPIRE].
[10] Wang, J.; Tian, Z.; Jing, J.; Fan, H., Parameter estimation for an expanding universe, Nucl. Phys. B, 892, 390 (2015) · Zbl 1328.83052 · doi:10.1016/j.nuclphysb.2015.01.021
[11] Sabín, C.; Bruschi, DE; Ahmadi, M.; Fuentes, I., Phonon creation by gravitational waves, New J. Phys., 16, 085003 (2014) · doi:10.1088/1367-2630/16/8/085003
[12] Schützhold, R., Interaction of a Bose-Einstein condensate with a gravitational wave, Phys. Rev. D, 98, 105019 (2018) · doi:10.1103/PhysRevD.98.105019
[13] Robbins, MPG; Afshordi, N.; Mann, RB, Bose-Einstein Condensates as Gravitational Wave Detectors, JCAP, 07, 032 (2019) · Zbl 1515.83082 · doi:10.1088/1475-7516/2019/07/032
[14] Bruschi, DE; Datta, A.; Ursin, R.; Ralph, TC; Fuentes, I., Quantum estimation of the Schwarzschild spacetime parameters of the Earth, Phys. Rev. D, 90, 124001 (2014) · doi:10.1103/PhysRevD.90.124001
[15] H. Cramér, Mathematical methods of statistics, vol. 43, Princeton University Press (1999). · Zbl 0985.62001
[16] C. R. Rao, Information and the accuracy attainable in the estimation of statistical parameters, in Breakthroughs in statistics, pp. 235-247, Springer (1992) [DOI].
[17] Huang, X.; Feng, J.; Zhang, Y-Z; Fan, H., Quantum estimation in an expanding spacetime, Annals Phys., 397, 336 (2018) · doi:10.1016/j.aop.2018.08.021
[18] N. D. Birrell and P. Davies, Quantum fields in curved space, Cambridge University Press (1982) [DOI]. · Zbl 0476.53017
[19] Avis, SJ; Isham, CJ; Storey, D., Quantum Field Theory in anti-de Sitter Space-Time, Phys. Rev. D, 18, 3565 (1978) · doi:10.1103/PhysRevD.18.3565
[20] Unruh, WG, Notes on black hole evaporation, Phys. Rev. D, 14, 870 (1976) · doi:10.1103/PhysRevD.14.870
[21] B. S. DeWitt, Quantum gravity: the new synthesis, in General relativity: An Einstein Centenary Survey, S. Hawking and W. Israel eds., pp. 680-745, Cambridge University Press (1979) [INSPIRE].
[22] Louko, J.; Satz, A., Transition rate of the Unruh-DeWitt detector in curved spacetime, Class. Quant. Grav., 25, 055012 (2008) · Zbl 1136.83019 · doi:10.1088/0264-9381/25/5/055012
[23] Jennings, D., On the response of a particle detector in Anti-de Sitter spacetime, Class. Quant. Grav., 27, 205005 (2010) · Zbl 1202.83055 · doi:10.1088/0264-9381/27/20/205005
[24] Sewell, GL, Quantum fields on manifolds: PCT and gravitationally induced thermal states, Annals Phys., 141, 201 (1982) · doi:10.1016/0003-4916(82)90285-8
[25] Gibbons, GW; Hawking, SW, Cosmological Event Horizons, Thermodynamics, and Particle Creation, Phys. Rev. D, 15, 2738 (1977) · doi:10.1103/PhysRevD.15.2738
[26] S. W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys.43 (1975) 199 [Erratum ibid.46 (1976) 206] [INSPIRE]. · Zbl 1378.83040
[27] Deser, S.; Levin, O., Accelerated detectors and temperature in (anti)-de Sitter spaces, Class. Quant. Grav., 14, L163 (1997) · Zbl 0884.53059 · doi:10.1088/0264-9381/14/9/003
[28] Casadio, R.; Chiodini, S.; Orlandi, A.; Acquaviva, G.; Di Criscienzo, R.; Vanzo, L., On the Unruh effect in de Sitter space, Mod. Phys. Lett. A, 26, 2149 (2011) · Zbl 1274.83058 · doi:10.1142/S0217732311036516
[29] Narnhofer, H.; Peter, I.; Thirring, WE, How hot is the de Sitter space?, Int. J. Mod. Phys. B, 10, 1507 (1996) · Zbl 1229.81205 · doi:10.1142/S0217979296000611
[30] Benatti, F.; Floreanini, R., Entanglement generation in uniformly accelerating atoms: Reexamination of the unruh effect, Phys. Rev. A, 70, 012112 (2004) · doi:10.1103/PhysRevA.70.012112
[31] Tian, Z.; Wang, J.; Fan, H.; Jing, J., Relativistic quantum metrology in open system dynamics, Sci. Rep., 5, 7946 (2015) · doi:10.1038/srep07946
[32] Hao, X.; Wu, Y., Quantum parameter estimation in the Unruh-DeWitt detector model, Annals Phys., 372, 110 (2016) · Zbl 1380.81080 · doi:10.1016/j.aop.2016.04.021
[33] Moustos, D.; Anastopoulos, C., Non-Markovian time evolution of an accelerated qubit, Phys. Rev. D, 95, 025020 (2017) · doi:10.1103/PhysRevD.95.025020
[34] Kaplanek, G.; Burgess, CP, Hot Accelerated Qubits: Decoherence, Thermalization, Secular Growth and Reliable Late-time Predictions, JHEP, 03, 008 (2020) · Zbl 1435.83052 · doi:10.1007/JHEP03(2020)008
[35] Kaplanek, G.; Burgess, CP, Hot Cosmic Qubits: Late-Time de Sitter Evolution and Critical Slowing Down, JHEP, 02, 053 (2020) · doi:10.1007/JHEP02(2020)053
[36] Kaplanek, G.; Burgess, CP, Qubits on the Horizon: Decoherence and Thermalization near Black Holes, JHEP, 01, 098 (2021) · doi:10.1007/JHEP01(2021)098
[37] Manzano, D., A short introduction to the lindblad master equation, AIP Advances, 10, 025106 (2020) · doi:10.1063/1.5115323
[38] Ahmadzadegan, A.; Lalegani, F.; Kempf, A.; Mann, RB, Seeing in Complete Darkness, Using the Unruh Effect, Phys. Rev. D, 100, 085013 (2019) · doi:10.1103/PhysRevD.100.085013
[39] Brenna, WG; Brown, EG; Mann, RB; Martín-Martínez, E., Universality and thermalization in the Unruh Effect, Phys. Rev. D, 88, 064031 (2013) · doi:10.1103/PhysRevD.88.064031
[40] Ahmadzadegan, A.; Martin-Martinez, E.; Mann, RB, Cavities in curved spacetimes: the response of particle detectors, Phys. Rev. D, 89, 024013 (2014) · doi:10.1103/PhysRevD.89.024013
[41] Brown, EG; Martin-Martinez, E.; Menicucci, NC; Mann, RB, Detectors for probing relativistic quantum physics beyond perturbation theory, Phys. Rev. D, 87, 084062 (2013) · doi:10.1103/PhysRevD.87.084062
[42] Bruschi, DE; Lee, AR; Fuentes, I., Time evolution techniques for detectors in relativistic quantum information, J. Phys. A, 46, 165303 (2013) · Zbl 1267.81026 · doi:10.1088/1751-8113/46/16/165303
[43] D. Petz and C. Ghinea, Introduction to quantum fisher information, in Quantum probability and related topics, pp. 261-281, World Scientific (2011) [DOI]. · Zbl 1257.81015
[44] Giovannetti, V.; Lloyd, S.; Maccone, L., Quantum metrology, Phys. Rev. Lett., 96, 010401 (2006) · doi:10.1103/PhysRevLett.96.010401
[45] Paris, MG, Quantum estimation for quantum technology, Int. J. Quant. Inf., 7, 125 (2009) · Zbl 1162.81351 · doi:10.1142/S0219749909004839
[46] Bañados, M.; Teitelboim, C.; Zanelli, J., The Black hole in three-dimensional space-time, Phys. Rev. Lett., 69, 1849 (1992) · Zbl 0968.83514 · doi:10.1103/PhysRevLett.69.1849
[47] G. Lifschytz and M. Ortiz, Scalar field quantization on the (2+1)-dimensional black hole background, Phys. Rev. D49 (1994) 1929 [gr-qc/9310008] [INSPIRE].
[48] Henderson, LJ; Hennigar, RA; Mann, RB; Smith, ARH; Zhang, J., Harvesting Entanglement from the Black Hole Vacuum, Class. Quant. Grav., 35 (2018) · Zbl 1431.83096 · doi:10.1088/1361-6382/aae27e
[49] M. P. G. Robbins, L. J. Henderson and R. B. Mann, Entanglement Amplification from Rotating Black Holes, arXiv:2010.14517 [INSPIRE].
[50] Martín-Martínez, E.; Smith, ARH; Terno, DR, Spacetime structure and vacuum entanglement, Phys. Rev. D, 93, 044001 (2016) · doi:10.1103/PhysRevD.93.044001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.