×

Quantum demultiplexer of quantum parameter-estimation information in quantum networks. (English) Zbl 1395.81079

Summary: The quantum demultiplexer is constructed by a series of unitary operators and multipartite entangled states. It is used to realize information broadcasting from an input node to multiple output nodes in quantum networks. The scheme of quantum network communication with respect to phase estimation is put forward through the demultiplexer subjected to amplitude damping noises. The generalized partial measurements can be applied to protect the transferring efficiency from environmental noises in the protocol. It is found out that there are some optimal coherent states which can be prepared to enhance the transmission of phase estimation. The dynamics of state fidelity and quantum Fisher information are investigated to evaluate the feasibility of the network communication. While the state fidelity deteriorates rapidly, the quantum Fisher information can be enhanced to a maximum value and then decreases slowly. The memory effect of the environment induces the oscillations of fidelity and quantum Fisher information. The adjustment of the strength of partial measurements is helpful to increase quantum Fisher information.

MSC:

81P45 Quantum information, communication, networks (quantum-theoretic aspects)
94A17 Measures of information, entropy
81P15 Quantum measurement theory, state operations, state preparations
81P40 Quantum coherence, entanglement, quantum correlations
81S22 Open systems, reduced dynamics, master equations, decoherence
Full Text: DOI

References:

[1] Monroe, C, Quantum networks with trapped ions, Rev. Mod. Phys., 82, 1209-1224, (2007)
[2] U’Ren, AB; Silberhorn, C; Banaszek, K; Walmsley, IA, Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks, Phys. Rev. Lett., 93, 093601, (2004) · doi:10.1103/PhysRevLett.93.093601
[3] Siomau, M; Fritzsche, S, Evolution equation for entanglement of multiqubit systems, Phys. Rev. A, 82, 13442-13444, (2010)
[4] Gao, Y; Zhou, H; Zou, D; Peng, X; Du, J, Preparation of Greenberger-horne—zeilinger and w states on a one-dimensional Ising chain by global control, Phys. Rev. A, 87, 379-388, (2013) · doi:10.1103/PhysRevA.87.032335
[5] Liu, S; Yu, R; Li, J; Wu, Y, Generation of a multi-qubit w entangled state through spatially separated semiconductor quantum-dot-molecules in cavity-quantum electrodynamics arrays, J. Appl. Phys., 115, 1569, (2014)
[6] Xiao, X; Yao, Y; Zhong, W-J; Li, Y-L; Xie, Y-M, Enhancing teleportation of quantum Fisher information by partial measurements, Phys. Rev. A, 93, 012307, (2016) · doi:10.1103/PhysRevA.93.012307
[7] Bouwmeester, D; Pan, JW; Mattle, K; Eibl, M; Weinfurter, H; Zeilinger, A, Experimental quantum teleportation, Nature, 390, 575, (1997) · Zbl 1369.81006 · doi:10.1038/37539
[8] Furusawa, A; Sørensen, JL; Braunstein, SL; Fuchs, CA; Kimble, HJ; Polzik, ES, Unconditional quantum teleportation, Science, 282, 706-709, (1998) · doi:10.1126/science.282.5389.706
[9] Bennett, CH; Brassard, G; Crépeau, C; Jozsa, R; Peres, A; Wootters, WK, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett., 70, 1895, (1993) · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[10] Tan, X; Zhang, X; Fang, J, Perfect quantum teleportation by four-particle cluster state, Inf. Process. Lett., 116, 347-350, (2016) · Zbl 1352.81020 · doi:10.1016/j.ipl.2016.01.006
[11] Muralidharan, S; Jain, S; Panigrahi, PK, Splitting of quantum information using n-qubit linear cluster states, Opt. Commun., 284, 1082-1085, (2010) · doi:10.1016/j.optcom.2010.10.026
[12] Hao, X; Wu, Y, Quantum parameter estimation in the Unruh-dewitt detector model, Ann. Phys., 372, 110-118, (2016) · Zbl 1380.81080 · doi:10.1016/j.aop.2016.04.021
[13] Haine, SA; Szigeti, SS, Quantum metrology with mixed states: when recovering lost information is better than never losing it, Phys. Rev. A, 92, 032317, (2015) · doi:10.1103/PhysRevA.92.032317
[14] Hao, X; Wu, Y, Quantum nonunital dynamics of spin-Bath-assisted Fisher information, AIP Adv., 6, 233601, (2016) · doi:10.1063/1.4947035
[15] Walmsley, IA; Nunn, J, Editorial: building quantum networks, Phys. Rev. Appl., 6, 040001, (2016) · doi:10.1103/PhysRevApplied.6.040001
[16] Ritter, S; Nölleke, C; Hahn, C; Reiserer, A; Neuzner, A; Uphoff, M; Mücke, M; Figueroa, E; Bochmann, J; Rempe, G, An elementary quantum network of single atoms in optical cavities, Nature (London), 484, 195, (2012) · doi:10.1038/nature11023
[17] Behzadi, N; Rudsary, SK; Salmasi, BA, Perfect routing of quantum information in regular cavity QED networks, Eur. Phys. J. D, 67, 1-9, (2013) · doi:10.1140/epjd/e2013-40474-9
[18] Munro, WJ; Harrison, KA; Stephen, AM; Devitt, SJ; Nemoto, K, From quantum multiplexing to high-performance quantum networking, Nat. Photonics, 4, 792, (2010) · doi:10.1038/nphoton.2010.213
[19] Weiss, U.: Quantum Dissipative Systems, 2nd edn. World Scientific, Singapore (1999) · Zbl 1137.81301 · doi:10.1142/4239
[20] Gardiner, C.W., Zoller, P.: Quantum Noise. Springer, Berlin (1991) · Zbl 0998.81555 · doi:10.1007/978-3-662-09642-0
[21] Anandan, J; Aharonov, Y, Geometry of quantum evolution, Phys. Rev. Lett., 65, 1697-1700, (1990) · Zbl 0960.81524 · doi:10.1103/PhysRevLett.65.1697
[22] Watanabe, Y; Sagawa, T; Ueda, M, Optimal measurement on noisy quantum systems, Phys. Rev. Lett., 104, 020401, (2010) · doi:10.1103/PhysRevLett.104.020401
[23] Tan, QS; Huang, Y; Yin, X; Kuang, LM; Wang, X, Enhancement of parameter-estimation precision in noisy systems by dynamical decoupling pulses, Phys. Rev. A, 87, 032102, (2013) · doi:10.1103/PhysRevA.87.032102
[24] Wang, SC; Yu, ZW; Wang, XB, Protecting quantum states from decoherence of finite temperature using weak measurement, Phys. Rev. A, 89, 022318, (2014) · doi:10.1103/PhysRevA.89.022318
[25] Katz, N; Korotkov, AN, Coherent state evolution in a superconducting qubit from partial-collapse measurement, Science, 312, 1498-1500, (2006) · doi:10.1126/science.1126475
[26] Man, ZX; An, NB; Xia, YJ, Improved quantum state transfer via quantum partially collapsing measurements, Ann. Phys., 349, 209, (2014) · Zbl 1343.81020 · doi:10.1016/j.aop.2014.06.018
[27] Collins, D; Stephens, J, Depolarizing channel parameter estimation using noisy initial states, Phys. Rev. A, 92, 032324, (2015) · doi:10.1103/PhysRevA.92.032324
[28] Zheng, Q; Ge, L; Yao, Y; Zhi, Q, Enhancing parameter precision of optimal quantum estimation by direct quantum feedback, Phys. Rev. A, 91, 033805, (2015) · doi:10.1103/PhysRevA.91.033805
[29] Blok, MS; Bonato, C; Markham, ML; Twitchen, DJ; Dobrovitski, VV; Hanson, R, Manipulating a qubit through the backaction of sequential partial measurements and real-time feedback, Nat. Phys., 10, 189-193, (2013) · doi:10.1038/nphys2881
[30] Clerk, AA; Devoret, MH; Girvin, SM; Marquardt, F; Schoelkopf, RJ, Introduction to quantum noise, measurement and amplification, Rev. Mod. Phys., 82, 1155-1208, (2010) · Zbl 1205.81001 · doi:10.1103/RevModPhys.82.1155
[31] Paraoanu, GS, Generalized partial measurements, Eur. Phys. Lett., 93, 64002, (2011) · doi:10.1209/0295-5075/93/64002
[32] Paraoanu, GS, Extraction of information from a single quantum, Phys. Rev. A, 83, 044101, (2011) · doi:10.1103/PhysRevA.83.044101
[33] Kim, YS; Lee, JC; Kwon, O; Kim, YH, Protecting entanglement from decoherence using weak measurement and quantum measurement reversal, Nat. Phys., 8, 117-120, (2011) · doi:10.1038/nphys2178
[34] Korotkov, AN; Jordan, AN, Undoing a weak quantum measurement of a solid-state qubit, Phys. Rev. Lett., 97, 166805, (2006) · doi:10.1103/PhysRevLett.97.166805
[35] Qiu, L; Tang, G; Yang, X; Wang, A, Enhancing teleportation fidelity by means of weak measurements or reversal, Ann. Phys., 350, 137-145, (2014) · Zbl 1344.81047 · doi:10.1016/j.aop.2014.07.012
[36] Pramanik, T; Majumdar, AS, Improving the fidelity of teleportation through noisy channels using weak measurement, Phys. Lett. A, 377, 3209-3215, (2013) · Zbl 1295.81032 · doi:10.1016/j.physleta.2013.10.012
[37] Behzadi, N., Bahram, A.: Enhancing quantum state transfer efficiency in binary-tree spin networks by partially collapsing measurements. arXiv:1611.03035 · Zbl 1395.81058
[38] Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, Cambridge (1976) · Zbl 1332.81011
[39] Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002) · Zbl 1053.81001
[40] Breuer, HP; Laine, EM; Piilo, J; Vacchini, B, Colloquium: non-Markovian dynamics in open quantum systems, Rev. Mod. Phys., 88, 021002, (2015) · doi:10.1103/RevModPhys.88.021002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.