×

The approximation property and exactness of locally compact groups. (English) Zbl 1465.22003

As mentioned in the abstract of the paper by Suzuki, the theorem of Haagerup and Kraus is extended to the \(C^*\)-algebra context. Namely, the reduced crossed product of a \(C^*\)-algebra with the (strongly) stable approximation property by an action of a locally compact group with the approximation property has the same property preserved. Solved by its method is an open unapprochable implication that the approximation property of a general locally compact group implies the group to become exact.
We may recall the following for convenience if to be started or not.
A locally compact group is said to have the approximation property if there is a net of the Fourier group algebra converging to the constant one function on the group in the certain \(\sigma\)-topology.
A \(C^*\)-algebra is said to have the (strongly) stable approximation property if the identity map of the \(C^*\)-algebra is in the closure of finite rank operators as in completely bounded linear maps of the \(C^*\)-algebra in the (strongly) stable point-wise norm topology, tensored with the identity map on the \(C^*\)-algebra of all compact operators (or of all bounded operators) on an infinite-dimensional Hilbert space.
As a discovery point of view, it seems to be from discrete to general, as a converse of some recent current from continuous to discrete.

MSC:

22D25 \(C^*\)-algebras and \(W^*\)-algebras in relation to group representations
46L05 General theory of \(C^*\)-algebras
46L55 Noncommutative dynamical systems

References:

[1] J. Brodzki, C. Cave and K. Li, Exactness of locally compact groups, Adv. Math., 312 (2017), 209-233. · Zbl 1387.22009 · doi:10.1016/j.aim.2017.03.020
[2] A. Brothier, T. Deprez and S. Vaes, Rigidity for von Neumann algebras given by locally compact groups and their crossed products, Comm. Math. Phys., 361 (2018), 81-125. · Zbl 1403.46053 · doi:10.1007/s00220-018-3091-2
[3] N. P. Brown and N. Ozawa, \( \text{C}^{\ast} \)-Algebras and Finite-Dimensional Approximations, Grad. Stud. Math., 88, Amer. Math. Soc., Providence, RI, 2008. · Zbl 1160.46001
[4] J. de Cannière and U. Haagerup, Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups, Amer. J. Math., 107 (1985), 455-500. · Zbl 0577.43002 · doi:10.2307/2374423
[5] J. Chabert, S. Echterhoff and H. Oyono-Oyono, Going-down functors, the Künneth formula, and the Baum-Connes conjecture, Geom. Funct. Anal., 14 (2004), 491-528. · Zbl 1063.46056 · doi:10.1007/s00039-004-0467-6
[6] M. Cowling and U. Haagerup, Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one, Invent. Math., 96 (1989), 507-549. · Zbl 0681.43012 · doi:10.1007/BF01393695
[7] J. Crann and M. Neufang, A non-commutative Fejér theorem for crossed products, and applications, preprint, arXiv:1901.08700. · Zbl 1330.22013
[8] E. G. Effros and Z.-J. Ruan, On approximation properties for operator spaces, Internat. J. Math., 1 (1990), 163-187. · Zbl 0747.46014 · doi:10.1142/S0129167X90000113
[9] P. Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France, 92 (1964), 181-236. · Zbl 0169.46403 · doi:10.24033/bsmf.1607
[10] G. B. Folland, A Course in Abstract Harmonic Analysis, Stud. Adv. Math., CRC Press, Boca Raton, 1995. · Zbl 0857.43001
[11] M. Gromov, Random walk in random groups, Geom. Funct. Anal., 13 (2003), 73-146. · Zbl 1122.20021 · doi:10.1007/s000390300002
[12] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., 16 (1955). · Zbl 0064.35501
[13] U. Haagerup, On the dual weights for crossed products of von Neumann algebras I, Math. Scand., 43 (1978), 99-118. · Zbl 0405.46052 · doi:10.7146/math.scand.a-11768
[14] U. Haagerup, On the dual weights for crossed products of von Neumann algebras II, Math. Scand., 43 (1978), 119-140. · Zbl 0405.46053 · doi:10.7146/math.scand.a-11769
[15] U. Haagerup, Operator valued weights in von Neumann algebras, I, J. Funct. Anal., 32 (1979), 175-206. · Zbl 0426.46046 · doi:10.1016/0022-1236(79)90053-3
[16] U. Haagerup, Operator valued weights in von Neumann algebras, II, J. Funct. Anal., 33 (1979), 339-361. · Zbl 0426.46047 · doi:10.1016/0022-1236(79)90072-7
[17] U. Haagerup, An example of a non nuclear \(C^{\ast}\)-algebra, which has the metric approximation property, Invent. Math., 50 (1978), 279-293. · Zbl 0408.46046 · doi:10.1007/BF01410082
[18] U. Haagerup, Group \(C^{\ast}\)-algebras without the completely bounded approximation property, J. Lie Theory, 26 (2016), 861-887. · Zbl 1353.22004
[19] U. Haagerup and J. Kraus, Approximation properties for group \(C^{\ast}\)-algebras and group von Neumann algebras, Trans. Amer. Math. Soc., 344 (1994), 667-699. · Zbl 0806.43002
[20] U. Haagerup and T. de Laat, Simple Lie groups without the approximation property, Duke Math. J., 162 (2013), 925-964. · Zbl 1266.22008 · doi:10.1215/00127094-2087672
[21] C. Houdayer and S. Raum, Locally compact groups acting on trees, the type I conjecture and non-amenable von Neumann algebras, Comment. Math. Helv., 94 (2019), 185-219. · Zbl 1468.22016 · doi:10.4171/CMH/458
[22] E. Kirchberg and S. Wassermann, Permanence properties of \(\text{C}^{\ast} \)-exact groups, Doc. Math., 4 (1999), 513-558 (electronic). · Zbl 0958.46036
[23] J. Kraus, The slice map problem and approximation properties, J. Funct. Anal., 102 (1991), 116-155. · Zbl 0747.46046 · doi:10.1016/0022-1236(91)90138-U
[24] V. Lafforgue and M. de la Salle, Noncommutative \(L^p\)-spaces without the completely bounded approximation property, Duke Math. J., 160 (2011), 71-116. · Zbl 1267.46072 · doi:10.1215/00127094-1443478
[25] D. Osajda, Small cancellation labellings of some infinite graphs and applications, to appear in Acta Math., arXiv:1406.5015.
[26] N. Ozawa, Examples of groups which are not weakly amenable, Kyoto J. Math., 52 (2012), 333-344. · Zbl 1242.43007 · doi:10.1215/21562261-1550985
[27] N. Ozawa, A remark on fullness of some group measure space von Neumann algebras, Compos. Math., 152 (2016), 2493-2502. · Zbl 1379.46048 · doi:10.1112/S0010437X16007727
[28] N. Ozawa and S. Popa, On a class of \({\rm II}_1\) factors with at most one Cartan subalgbra, Ann. of Math. (2), 172 (2010), 713-749. · Zbl 1201.46054
[29] G. Pedersen, \(C^{\ast}\)-Algebras and Their Automorphism Groups, London Math. Soc. Monogr., 14, Academic Press, Inc., 1979. · Zbl 0416.46043
[30] Y. Suzuki, Group \(\text{C}^{\ast} \)-algebras as decreasing intersection of nuclear \(\text{C}^{\ast} \)-algebras, Amer. J. Math., 139 (2017), 681-705. · Zbl 1390.46052 · doi:10.1353/ajm.2017.0018
[31] Y. Suzuki, Minimal ambient nuclear \(\text{C}^{\ast} \)-algebras, Adv. Math., 304 (2017), 421-433. · Zbl 1369.46048 · doi:10.1016/j.aim.2016.09.002
[32] Y. Suzuki, Elementary constructions of non-discrete \(\text{C}^{\ast} \)-simple groups, Proc. Amer. Math. Soc., 145 (2017), 1369-1371. · Zbl 1354.22010 · doi:10.1090/proc/13301
[33] Y. Suzuki, Simple equivariant \(\text{C}^{\ast} \)-algebras whose full and reduced crossed products coincide, J. Noncommut. Geom., 13 (2019), 1577-1585. · Zbl 1453.46060 · doi:10.4171/JNCG/356
[34] Y. Suzuki, Complete descriptions of intermediate operator algebras by intermediate extensions of dynamical systems, Commun. Math. Phys., 375 (2020), 1273-1297. · Zbl 1452.46042 · doi:10.1007/s00220-019-03436-1
[35] J. Zacharias, Splitting for subalgebras of tensor products, Proc. Amer. Math. Soc., 129 (2001), 407-413. · Zbl 0983.46043 · doi:10.1090/S0002-9939-00-05629-X
[36] J. Zacharias, On the invariant translation approximation property for discrete groups, Proc. Amer. Math. Soc., 134 (2006), 1909-1916. · Zbl 1099.46038 · doi:10.1090/S0002-9939-06-08191-3
[37] L.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.