×

The generalized linear sampling and factorization methods only depends on the sign of contrast on the boundary. (English) Zbl 1380.65226

Summary: We extend the applicability of the generalized linear sampling method (GLSM) [the author and H. Haddar, Inverse Probl. 30, No. 3, Article ID 035011, 20 p. (2014; Zbl 1291.35377)] and the factorization method (FM) [A. Kirsch and N. Grinberg, The factorization method for inverse problems. Oxford Lecture Series in Mathematics and Its Applications 36 (2008; Zbl 1222.35001)] to the case of inhomogeneities where the contrast changes sign. Both methods give an exact characterization of the target shapes in terms of the farfield operator (at a fixed frequency) using the coercivity property of a special solution operator. We prove this property assuming that the contrast has a fixed sign in a neighborhood of the inhomogeneities boundary. We treat both isotropic and anisotropic scatterers with possibly different supports for the isotropic and anisotropic parts. We finally validate the methods through some numerical tests in two dimensions.

MSC:

65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs
35R60 PDEs with randomness, stochastic partial differential equations
35R30 Inverse problems for PDEs

References:

[1] L. Audibert, Identifying defects in an unknown background using differential measurements,, Inverse Problems and Imaging, 9, 625 (2015) · Zbl 1334.35417 · doi:10.3934/ipi.2015.9.625
[2] L. Audibert, A generalized formulation of the linear sampling method with exact characterization of targets in terms of farfield measurements,, Inverse Problems, 30 (2014) · Zbl 1291.35377 · doi:10.1088/0266-5611/30/3/035011
[3] L. Audibert, The generalized linear sampling method for limited aperture measurements,, SIAM J. Imaging Sci., 10, 845 (2017) · Zbl 1397.94005 · doi:10.1137/16M110112X
[4] A.-S. Bonnet-Ben Dhia, On the use of \(T\)-coercivity to study the interior transmission eigenvalue problem,, C. R. Math. Acad. Sci. Paris, 349, 647 (2011) · Zbl 1244.35099 · doi:10.1016/j.crma.2011.05.008
[5] F. Cakoni, <em>Qualitative Methods in Inverse Scattering Theory</em>,, Interaction of Mechanics and Mathematics. Springer-Verlag (2006) · Zbl 1099.78008
[6] F. Cakoni, <em>Inverse Scattering Theory and Transmission Eigenvalues</em>, volume 88 of <em>CBMS Series</em>,, SIAM publications (2016) · Zbl 1366.35001 · doi:10.1137/1.9781611974461.ch1
[7] F. Cakoni, The factorization method for a defective region in an anisotropic material,, Inverse Problems, 31 (2015) · Zbl 1327.78016 · doi:10.1088/0266-5611/31/2/025002
[8] H. Haddar, Boundary integral equations for the transmission eigenvalue problem for aaxwell equations,, J. Integral Equations Appl., 27, 375 (2015) · Zbl 1332.35247 · doi:10.1216/JIE-2015-27-3-375
[9] A. Cossonnière, Surface integral formulation of the interior transmission problem,, J. Integral Equations Appl., 25, 341 (2013) · Zbl 1366.78019 · doi:10.1216/JIE-2013-25-3-341
[10] L. Evgeny, Monotonicity, in inverse medium scattering. · Zbl 0268.26007
[11] B. Gebauer, The factorization method for real elliptic problems,, Zeitschrift für Analysis und ihre Anwendungen, 25, 81 (2006) · Zbl 1091.35115 · doi:10.4171/ZAA/1279
[12] D. Gilbarg, <em>Elliptic Partial Differential Equations of Second Order</em>,, Classics in Mathematics. Springer-Verlag (2001) · Zbl 1042.35002
[13] P. Grisvard, <em>Elliptic Problems in Nonsmooth Domains</em>, volume 24 of <em>Monographs and Studies in Mathematics</em>,, Pitman (Advanced Publishing Program) (1985) · Zbl 0695.35060
[14] A. Kirsch, The factorization method for a class of inverse elliptic problems,, Mathematische Nachrichten, 278, 258 (2005) · Zbl 1067.35148 · doi:10.1002/mana.200310239
[15] A. Kirsch, A note on Sylvester’s proof of discreteness of interior transmission eigenvalues,, Comptes Rendus Mathématique, 354, 377 (2016) · Zbl 1380.35082 · doi:10.1016/j.crma.2016.01.015
[16] A. Kirsch, <em>The Factorization Method for Inverse Problems</em>, volume 36 of Oxford Lecture Series in Mathematics and its Applications,, Oxford University Press (2008) · Zbl 1222.35001
[17] J. Sylvester, Discreteness of transmission eigenvalues via upper triangular compact operators,, SIAM J. Math. Anal., 44, 341 (2012) · Zbl 1238.81172 · doi:10.1137/110836420
[18] J. Yang, The factorization method for reconstructing a penetrable obstacle with unknown buried objects,, SIAM Journal of Applied Mathematics, 73, 617 (2013) · Zbl 1364.35224 · doi:10.1137/120883724
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.