×

Space-time finite element approximation of the Biot poroelasticity system with iterative coupling. (English) Zbl 1439.74389

Summary: We analyze an optimized artificial fixed-stress iterative scheme for a space-time finite element approximation of the Biot system modeling fluid flow in deformable porous media. The iteration is based on a prescribed constant artificial volumetric mean total stress in the first half step. The optimization comes through the adaptation of a numerical stabilization or tuning parameter and aims at an acceleration of the iterations. The separated subproblems of fluid flow, written as a mixed first order in space system, and mechanical deformation are discretized by space-time finite element methods of arbitrary order. Continuous and discontinuous Galerkin discretizations of the time variable are encountered. The convergence of the iterative schemes is proved for the continuous and fully discrete case. The choice of the optimization parameter is identified in the proofs of convergence of the iterations. The analyses are illustrated and confirmed by numerical experiments.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)

Software:

deal.ii

References:

[1] Mikelić, A.; Wheeler, M. F., Theory of the dynamic Biot-Allard equations and their link to the quasi-static Biot system, J. Math. Phys., 53, 1-15 (2012), 123702 · Zbl 1331.35283
[2] Mikelić, A.; Wang, B.; Wheeler, M. F., Numerical convergence study of iterative coupling for coupled flow and geomechanics, Comput. Geosci., 18, 325-341 (2014) · Zbl 1386.76115
[3] Showalter, R., Diffusion in poro-elastic media, J. Math. Anal. Appl., 251, 310-340 (2000) · Zbl 0979.74018
[4] Showalter, R.; Stefanelli, U., Diffusion in poro-elastic media, Math. Methods Appl. Sci., 27, 2131-2151 (2004) · Zbl 1095.74011
[5] Almani, T.; Kumar, K.; Dogru, A.; Singh, G.; Wheeler, M. F., Convergence analysis of multirate fixed-stress split iterative schemes for coupling flow with geomechanics, Comput. Methods Appl. Mech. Engrg., 311, 180-207 (2016) · Zbl 1439.74183
[6] Both, J. W.; Borregales, M.; Nordbotton, J. M.; Kundan, K.; Radu, F. A., Robust fixed stress splitting for Biot’s equations in heterogeneous media, Appl. Math. Lett., 68, 101-108 (2017) · Zbl 1383.74025
[7] Castelletto, N.; White, J. A.; Tchelepi, H. A., Accuracy and convergence properties of the fixed-stress iterative solution of two-way coupled poromechanics, Int. J. Numer. Anal. Methods Geomech., 39, 1593-1618 (2015)
[8] Castelletto, N.; White, J. A.; Ferronato, M., Scalable algorithms for three-field mixed finite element coupled poromechanics, J. Comput. Phys., 327, 894-918 (2016) · Zbl 1373.76312
[9] Kim, J.; Tchelepi, H. A.; Juanes, R., Stability and convergence of sequential methods for coupled flow and geomechanics: Drained and undrained splits, Comput. Methods Appl. Mech. Engrg., 200, 2094-2116 (2011) · Zbl 1228.74106
[10] Mikelić, A.; Wheeler, M. F., Convergence of iterative coupling for coupled flow and geomechanics, Comput. Geosci., 17, 479-496 (2013)
[11] Philips, P. J.; Wheeler, M. F., A coupling of mixed and continuous Galerkin finite element methods for poroelasticity I, II, Comput. Geosci., 11, 131-158 (2007) · Zbl 1117.74015
[12] Settari, A.; Mourits, F. M., A coupled reservoir and geomechanical simulation system, SPE J., 3, 3, 219-226 (1998)
[13] White, J. A.; Castelletto, N.; Tchelepi, H. A., Block-partitioned solvers for coupled poromechanics: A unified framework, Comput. Methods Appl. Mech. Engrg., 303, 55-74 (2016) · Zbl 1425.74497
[14] List, F.; Radu, F. A., A study on iterative methods for solving Richards’ equation, Comput. Geosci., 20, 341-353 (2016) · Zbl 1396.65143
[15] Pop, I. S.; Radu, F. A.; Knabner, P., Mixed finite elements for the Richards equation: linearization procedure, J. Comput. Appl. Math., 168, 365-373 (2004) · Zbl 1057.76034
[16] Rodrigo, C.; Gaspar, F. J.; Hu, X.; Zikatanov, L. T., Stability and monotonicity for some discretizations of the Biots consolidation model, Comput. Methods Appl. Mech. Engrg., 298, 183-204 (2016) · Zbl 1425.74164
[17] Chen, Z., Finite Element Methods and their Applications (2010), Springer: Springer Berlin
[18] Jha, B.; Juanes, R., A locally conservative finite element framework for the simulation of coupled flow and reservoir geomechanics, Acta Geotechnica, 2, 139-153 (2007)
[19] Köcher, U.; Bause, M., Variational space-time methods for the wave equation, J. Sci. Comput., 61, 424-453 (2014) · Zbl 1304.65218
[20] Köcher, U., Variational Space-Time Methods for the Elastic Wave Equation and the Diffusion Equation (Ph.D. thesis) (2015), Helmut-Schmidt-Universität
[21] Lee, J., Robust finite element methods for Biot’s consolidation model, (ALogg, A.; Mardal, K. A., Proceedings of the 26th Nordic Seminar on Computational Machanics (2013), Center for Biomedical Computing, Simula Research Laboratory, Oslo), 123-126
[22] Nordbotten, J. M., Stable cell-centered finite volume discretization for biot equations, SIAM J. Numer. Anal., 54, 942-968 (2016) · Zbl 1382.76187
[23] Philips, P. J.; Wheeler, M. F., A coupling of mixed and discontinuous Galerkin finite element methods for poroelasticity, Comput. Geosci., 12, 417-435 (2008) · Zbl 1155.74048
[24] Philips, P. J.; Wheeler, M. F., Overcoming the problem of locking in linear elasticity and poroelasticity: an heuristic approach, Comput. Geosci., 13, 5-12 (2009) · Zbl 1172.74017
[25] Bastian, P., A fully-coupled discontinuous Galerkin method for two-phase flow in porous media with discontinuous capillary pressure, Comput. Geosci., 18, 779-796 (2014) · Zbl 1392.76072
[26] Karpinski, S.; Pop, I. S.; Radu, F. A., Analysis of a linearization scheme for an interior penalty discontinuous Galerkin method for two phase flow in porous media with dynamic capillarity effects, Internat. J. Numer. Methods Engrg., 1-29 (2017), in press. http://dx.doi.org/10.1002/nme.5526
[27] Riviere, B., Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation (2008), SIAM: SIAM Philadelphia · Zbl 1153.65112
[28] Riviere, B.; Wheeler, M. F.; Girault, V., Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems, Part I, Comput. Geosci., 3, 199, 337-360 (1999) · Zbl 0951.65108
[29] Ahmed, N.; Becher, S.; Matthies, G., Higher-order discontinuous Galerkin time stepping and local projection stabilization techniques for the transient Stokes problem, Comput. Methods Appl. Mech. Engrg., 313 (2017) · Zbl 1439.76041
[30] Ahmed, N.; Matthies, G.; Tobiska, L.; Xie, H., Discontinuous Galerkin time stepping with local projection stabilization for transient convection diffusion-reaction problems, Comput. Methods Appl. Mech. Engrg., 200, 1747-1756 (2011) · Zbl 1228.76078
[31] Bause, M.; Köcher, U., Variational time discretization for mixed finite element approximations of nonstationary diffusion problems, J. Comput. Appl. Math., 289, 208-224 (2015) · Zbl 1317.65201
[32] Dolejší, V.; Feistauer, M., Discontinuous Galerkin Method (2015), Springer: Springer Berlin · Zbl 1276.76039
[33] Hussain, S.; Schieweck, F.; Turek, S., A note on accurate and efficient higher order Galerkin time stepping schemes for nonstationary Stokes equations, Open Numer. Methods J., 4, 35-45 (2012) · Zbl 1322.76042
[34] Hussain, S.; Schieweck, F.; Turek, S., (Cangiani, A.; etal., Higher order Galerkin time discretization for nonstationary incompressible flow. Higher order Galerkin time discretization for nonstationary incompressible flow, Numer. Math. and Adv. Appl., 2011 (2013), Springer: Springer Berlin), 509-517 · Zbl 1273.76275
[35] Ern, A.; Schieweck, F., Discontinuous Galerkin method in time combined with an stabilized finite element method in space for linear first-order PDEs, Math. Comp., 85, 2099-2129 (2016) · Zbl 1416.65348
[36] Bangerth, W.; Rannacher, R., Adaptive Methods for Differential Equations (2003), Birkhäuser: Birkhäuser Basel · Zbl 1020.65058
[37] Ern, A.; Guermond, J. L., Theory and Practice of Finite Elements (2010), Springer: Springer Berlin
[38] Evans, L. C., Partial Differential Equations (2010), American Mathematical Society: American Mathematical Society Providence, Rhode Island · Zbl 1194.35001
[39] Ladyzenskaja, O. A.; Solonnikov, V. A.; Ural’ceva, N. N., Linear and Quasi-Linear Equations of Parabolic Type (1968), Mer. Math. Soc. Transl.: Mer. Math. Soc. Transl. Providence R I · Zbl 0174.15403
[40] Bergh, J.; Löfström, J., Interpolation Spaces. An Introduction (1976), Springer: Springer Berlin · Zbl 0344.46071
[41] Chen, Y.-Z.; Wu, L.-C., Second Order Elliptic Equations and Elliptic Systems (1998), American Mathematical Society: American Mathematical Society Rhode Island · Zbl 0902.35003
[42] Grisvard, P., Elliptic Problems in Nonsmooth Domains (1985), Pitman: Pitman Boston · Zbl 0695.35060
[43] Maz’ya, V.; Nazarov, S.; Plamenevskij, B., Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains (2000), Birkhäuser: Birkhäuser Basel · Zbl 1127.35301
[44] Quarteroni, A.; Valli, A., Numerical Approximation of Partial Differential Equations (2008), Springer: Springer Berlin · Zbl 1151.65339
[45] Bause, M.; Radu, F. A.; Köcher, U., Error analysis for discretizations of parabolic problems using continuous finite elements in time and mixed finite elements in space, Numer. Math., 1-42 (2015), submitted for publication. http://arxiv.org/abs/1504.04491
[46] Schieweck, F., A-stable discontinuous Galerkin-Petrov time discretization of higher order, J. Numer. Math., 18, 25-57 (2010) · Zbl 1198.65093
[47] Thomeé, V., Galerkin Finite Element Methods for Parabolic Problems (2006), Springer: Springer Berlin · Zbl 1105.65102
[48] Karakashin, O.; Makridakis, C., A space-time finite element method for the nonlinear Schrödinger equation: the continuous Galerkin method, SIAM J. Numer. Anal., 36, 1779-1807 (1999) · Zbl 0934.65110
[49] Bause, M.; Köcher, U., (Karasözen, B., Iterative coupling of variational space-time methods for Biot’s system of poroelasticity. Iterative coupling of variational space-time methods for Biot’s system of poroelasticity, Numerical Methods and Advanced Applications -ENUMATH 2015, vol. 201 (2016), Springer: Springer Berlin) · Zbl 1387.76048
[50] Bangerth, W.; Davydov, D.; Heister, T.; Heltai, L.; Kanschat, G.; Kronbichler, M.; Maier, M.; Turcksin, B.; Wells, D., The deal.II library version 8.4, J. Numer. Math., 24, 135-141 (2016) · Zbl 1348.65187
[51] Radu, F. A.; Nordbotten, J. M.; Pop, I. S.; Kumar, K., A robust linearization scheme for finite volume based discretizations for simulation of two-phase flow in porous media, J. Comput. Appl. Math., 289, 134-141 (2015) · Zbl 1320.76084
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.