×

A sequential discontinuous Galerkin method for the coupling of flow and geomechanics. (English) Zbl 1404.65162

Summary: A decoupled and sequential numerical method is proposed and analyzed for solving the linear poroelasticity equations. Unlike other splitting approaches, this method is not iterative, which results in a speed-up of the computational time. The interior penalty discontinuous Galerkin method is employed for the spatial discretization and is combined with the backward Euler method for the time discretization. We provide a convergence analysis of the scheme along with numerical results that confirm the theoretical results.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
35Q35 PDEs in connection with fluid mechanics
35Q74 PDEs in connection with mechanics of deformable solids
86A60 Geological problems
Full Text: DOI

References:

[1] Biot, M.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26(2), 182-185 (1955) · Zbl 0067.23603 · doi:10.1063/1.1721956
[2] Biot, M.: Theory of finite deformations of porous solids. Indiana Univ. Math. J. 21(7), 597-620 (1972) · Zbl 0229.76065 · doi:10.1512/iumj.1972.21.21048
[3] Biot, M.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155-164 (1941) · JFM 67.0837.01 · doi:10.1063/1.1712886
[4] Zheng, Y, Burridge, R., Burns, D.: Reservoir simulation with the finite element method using Biot poroelastic approach, Massachusetts Institute of Technology. Earth Resources Laboratory (2003) · Zbl 1098.74693
[5] Strehlow, K., Gottsmann, J.-H., Rust, A.-C.: Poroelastic responses of confined aquifers to subsurface strain and their use for volcano monitoring. Solid Earth. 6, 1207-1229 (2015) · doi:10.5194/se-6-1207-2015
[6] Young, J., Rivière, B., Cox, C.-S., Uray, K.: A mathematical model of intestinal oedema formation. Math. Med. Biol. 31, 1-15 (2012) · Zbl 1304.92073 · doi:10.1093/imammb/dqs025
[7] Mikelić, A., Wang, B., Wheeler, M.: Numerical convergence study of iterative coupling for coupled flow and geomechanics. Comput. Geosci. 18, 325-341 (2014) · Zbl 1386.76115 · doi:10.1007/s10596-013-9393-8
[8] Mikelić, A., Wheeler, M.: Convergence of iterative coupling for coupled flow and geomechanics. Comput. Geosci. 17, 455-461 (2013) · Zbl 1392.35235 · doi:10.1007/s10596-012-9318-y
[9] Rivière, B., Tan, J., Thompson, T.: Error analysis of primal discontinuous Galerkin methods for a mixed formulation of the Biot equations, Preprint submitted to Elsevier (2016) · Zbl 1368.65195
[10] Liu, R., Wheeler, M., Dawson, C., Dean, R.: Convection-dominated thermoporomechanics problem using incomplete interior penalty Galerkin method. Comput. Methods Appl. Mech. Eng. 198, 198-912 (2009) · Zbl 1229.76053
[11] Phillips, P., Wheeler, M.: A coupling of mixed and continuous Galerkin finite element methods for poroelasticity I: the continuous in time case. Comput. Geosci. 11, 131-144 (2007) · Zbl 1117.74015 · doi:10.1007/s10596-007-9045-y
[12] Phillips, P., Wheeler, M.: A coupling of mixed and continuous Galerkin finite element methods for poroelasticity II: the discrete-in-time case. Comput. Geosci. 11, 145-158 (2007) · Zbl 1117.74016 · doi:10.1007/s10596-007-9044-z
[13] Phillips, P., Wheeler, M.: A coupling of mixed and discontinuous Galerkin finite element methods for poroelasticity. Comput. Geosci. 12, 417-435 (2008) · Zbl 1155.74048 · doi:10.1007/s10596-008-9082-1
[14] Yi, S.-Y.: Convergence analysis of a new mixed finite element method for Biot’s consolidation model. Numer. Methods Partial Differ. Equ. 30(4), 1189-1210 (2014) · Zbl 1350.74024 · doi:10.1002/num.21865
[15] Phillips, P.: Finite element methods in linear poroelasticity: Theoretical and computational results. Ph.D thesis, University of Texas at Austin (2005) · Zbl 1075.74643
[16] Ferronato, M., Gambolati, G., Teatini, P.: Ill-conditioning of finite element poroelasticity equations. Int. J. Solids Struct. 38, 5994-6014 (2001) · Zbl 1075.74643
[17] Lewis, R., Schrefler, B.: The Finite Element Method in the Deformation and Consolidation of Porous Media. Wiley, New York (1987) · Zbl 0935.74004
[18] Hansbo, P., Larson, M.: Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method. Comput. Methods Appl. Mech. Eng. 191, 1895-1908 (2002) · Zbl 1098.74693 · doi:10.1016/S0045-7825(01)00358-9
[19] Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, Philadelphia (2008) · Zbl 1153.65112 · doi:10.1137/1.9780898717440
[20] Girault, V., Rivière, B.: DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition. SIAM J. Numer. Anal. 47, 2052-2089 (2009) · Zbl 1406.76082 · doi:10.1137/070686081
[21] Arnold, D.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742-760 (1982) · Zbl 0482.65060 · doi:10.1137/0719052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.