×

Three-way coupling of multiphase flow and poromechanics in porous media. (English) Zbl 1453.76080

Summary: We formulate a three-way coupling for both single phase flow and equation-of-state (EOS) compositional flow in a poroelastic medium. The algorithm is inspired by the previous work of R. Dean et al. [“A comparison of techniques for coupling porous flow and geomechanics”, SPE J. 11, No. 1, 132–140 (2006; doi:10.2118/79709-PA)]. An error indicator is calculated at each time step to determine if the mechanics equation must be solved and whether the fixed-stress iterative coupling is necessary; otherwise, only the flow equation is solved with an extrapolated mean stress. The convergence of three-way coupling is established by extending the a priori analyses of fixed-stress iterative coupling by V. Girault et al. [“A priori error estimates for a discretized poro-elastic-elastic system solved by a fixed-stress algorithm”, Oil Gas Sci. Technol.-Rev. IFP Energies nouvelles, 74, Article No. 24, 20 p. (2019; doi:10.2516/ogst/2018071)]. Numerical results for the Mandel’s problem confirm these theoretical results for single phase flow. Three-way coupling achieves speedup with a factor 2.7 and 6.6 for Mandel’s problem and field-scale coupled compositional flow and geomechanics simulations based on Cranfield field data respectively. Specifically, field-scale simulations of \(CO_2\) sequestration and surfactant-alternating-gas (SAG) process show that the three-way coupling substantially reduces mechanics solving time by 99.4% and 97.5% respectively compared to the fixed-stress split.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76S05 Flows in porous media; filtration; seepage
86A05 Hydrology, hydrography, oceanography
76T30 Three or more component flows
Full Text: DOI

References:

[1] Dean, R.; Gai, X.; Stone, C. M.; Minkoff, S., A comparison of techniques for coupling porous flow and geomechanics, SPE J., 11, 132-140 (2006)
[2] Girault, V.; Wheeler, M. F.; Almani, T.; Dana, S., A priori error estimates for a discretized poro-elastic-elastic system solved by a fixed-stress algorithm, Oil Gas Sci. Technol.-Rev. IFP Energies nouvelles, 74, 24 (2019)
[3] von Terzaghi, K., Theoretical Soil Mechanics (1944), Chapman: Chapman London
[4] Biot, M. A., Consolidation settlement under a rectangular load distribution, J. Appl. Phys., 12, 426-430 (1941) · JFM 67.0837.02
[5] Biot, M. A., General theory of three-dimensional consolidation, J. Appl. Phys., 12, 155-164 (1941) · JFM 67.0837.01
[6] Jha, B.; Juanes, R., A locally conservative finite element framework for the simulation of coupled flow and reservoir geomechanics, Acta Geotech., 2, 139-153 (2007)
[7] Phillips, P. J.; Wheeler, M. F., A coupling of mixed and continuous Galerkin finite element methods for poroelasticity I: the continuous in time case, Comput. Geosci., 11, 131 (2007) · Zbl 1117.74015
[8] Mikelić, A.; Wheeler, M. F., Convergence of iterative coupling for coupled flow and geomechanics, Comput. Geosci., 17, 455-461 (2013) · Zbl 1392.35235
[9] Mikelić, A.; Wang, B.; Wheeler, M. F., Numerical convergence study of iterative coupling for coupled flow and geomechanics, Comput. Geosci., 18, 325-341 (2014) · Zbl 1386.76115
[10] Kim, J.; Tchelepi, H. A.; Juanes, R., Stability, accuracy, and efficiency of sequential methods for coupled flow and geomechanics, (The SPE Reservoir Simulation Symposium. The SPE Reservoir Simulation Symposium, Houston, Texas (2009)), SPE119084 · Zbl 1228.74106
[11] Kim, J.; Tchelepi, H.; Juanes, R., Stability and convergence of sequential methods for coupled flow and geomechanics: fixed-stress and fixed-strain splits, Comput. Methods Appl. Mech. Eng., 200, 1591-1606 (2011) · Zbl 1228.74101
[12] Dana, S.; Ganis, B.; Wheeler, M. F., A multiscale fixed stress split iterative scheme for coupled flow and poromechanics in deep subsurface reservoirs, J. Comput. Phys., 352, 1-22 (2018) · Zbl 1375.76085
[13] Storvik, E.; Both, J. W.; Kumar, K.; Nordbotten, J. M.; Radu, F. A., On the optimization of the fixed-stress splitting for biot’s equations, Int. J. Numer. Methods Eng. (2019) · Zbl 07859732
[14] White, D.; Ganis, B.; Liu, R.; Wheeler, M. F., A near-wellbore study with a Drucker-Prager plasticity model coupled with a parallel compositional reservoir simulator, (SPE Reservoir Simulation Conference (2017), Society of Petroleum Engineers)
[15] R. da Silva, M. Murad, J. Obregon, A new fixed-stress split scheme in poroplastic media incorporating general plastic porosity constitutive theories, in: ECMOR XVI, 16th European Conference on the Mathematics of Oil Recovery, Sep. 3-Sep. 6, 2018.
[16] Both, J. W.; Kumar, K.; Nordbotten, J. M.; Radu, F. A., Anderson accelerated fixed-stress splitting schemes for consolidation of unsaturated porous media, Comput. Math. Appl., 77, 1479-1502 (2019) · Zbl 1442.65251
[17] Hong, Q.; Kraus, J.; Lymbery, M.; Wheeler, M. F., Parameter-robust convergence analysis of fixed-stress split iterative method for multiple-permeability poroelasticity systems (2018), preprint
[18] Almani, T.; Kumar, K.; Dogru, A.; Singh, G.; Wheeler, M. F., Convergence analysis of multirate fixed-stress split iterative schemes for coupling flow with geomechanics, Comput. Methods Appl. Mech. Eng., 311, 180-207 (2016) · Zbl 1439.74183
[19] Kumar, K.; Almani, T.; Singh, G.; Wheeler, M. F., Multirate Undrained Splitting for Coupled Flow and Geomechanics in Porous Media, Numerical Mathematics and Advanced Applications ENUMATH, vol. 2015, 431-440 (2016), Springer · Zbl 1387.76100
[20] Bause, M.; Radu, F. A.; Köcher, U., Space-time finite element approximation of the biot poroelasticity system with iterative coupling, Comput. Methods Appl. Mech. Eng., 320, 745-768 (2017) · Zbl 1439.74389
[21] Borregales, M.; Kumar, K.; Radu, F. A.; Rodrigo, C.; Gaspar, F. J., A parallel-in-time fixed-stress splitting method for biot consolidation model, Comput. Math. Appl. (2018)
[22] Gai, X.; Sun, S.; Wheeler, M. F.; Klie, H., A time-stepping scheme for coupled reservoir flow and geomechanics, (SPE Annual Technical Conference and Exhibition (2005), Society of Petroleum Engineers)
[23] Coussy, O., Poromechanics (2004), John Wiley & Sons
[24] Adams, R. A.; Fournier, J. J., Sobolev Spaces, vol. 140 (2003), Elsevier · Zbl 1098.46001
[25] Wheeler, M.; Xue, G.; Yotov, I., A multipoint flux mixed finite element method on distorted quadrilaterals and hexahedra, Numer. Math., 121, 165-204 (2012) · Zbl 1277.65100
[26] Girault, V.; Kumar, K.; Wheeler, M. F., Convergence of iterative coupling of geomechanics with flow in a fractured poroelastic medium, Comput. Geosci., 20, 997-1011 (2016) · Zbl 1391.76650
[27] Dana, S.; Wheeler, M. F., Convergence analysis of two-grid fixed stress split iterative scheme for coupled flow and deformation in heterogeneous poroelastic media, Comput. Methods Appl. Mech. Eng., 341, 788-806 (2018) · Zbl 1440.74122
[28] Chen, Z.; Huan, G.; Ma, Y., Computational Methods for Multiphase Flows in Porous Media, vol. 2 (2006), Siam · Zbl 1092.76001
[29] Singh, G.; Wheeler, M. F., Compositional flow modeling using a multi-point flux mixed finite element method, Comput. Geosci., 20, 421-435 (2016) · Zbl 1395.65091
[30] Ganis, B.; Singh, G.; Wheeler, M. F., A parallel framework for a multipoint flux mixed finite element equation of state compositional flow simulator, Comput. Geosci., 21, 1189-1202 (2017) · Zbl 1396.76050
[31] Wang, B., Parallel Simulation of Coupled Flow and Geomechanics in Porous Media (2014), The University of Texas at Austin: The University of Texas at Austin Austin, Texas, Ph.D. thesis
[32] Delshad, M.; Kong, X.; Tavakoli, R.; Hosseini, S. A.; Wheeler, M. F., Modeling and simulation of carbon sequestration at Cranfield incorporating new physical models, Int. J. Greenh. Gas Control, 18, 463-473 (2013)
[33] Lu, X.; Lotfollahi, M.; Ganis, B.; Min, B.; Wheeler, M. F., An integrated flow-geomechanical analysis of flue gas injection in cranfield, (SPE Improved Oil Recovery Conference (2018), Society of Petroleum Engineers)
[34] Lotfollahi, M.; Kim, I.; Beygi, M. R.; Worthen, A. J.; Huh, C.; Johnston, K. P.; Wheeler, M. F.; DiCarlo, D. A., Foam generation hysteresis in porous media: experiments and new insights, Transp. Porous Media, 116, 687-703 (2017)
[35] Brezzi, F.; Douglas, J.; Marini, L. D., Two families of mixed finite elements for second order elliptic problems, Numer. Math., 47, 217-235 (1985) · Zbl 0599.65072
[36] Ingram, R.; Wheeler, M. F.; Yotov, I., A multipoint flux mixed finite element method on hexahedra, SIAM J. Numer. Anal., 48, 1281-1312 (2010) · Zbl 1228.65225
[37] Brezzi, F.; Douglas, J.; Durán, R.; Fortin, M., Mixed finite elements for second order elliptic problems in three variables, Numer. Math., 51, 237-250 (1987) · Zbl 0631.65107
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.