×

On the optimization of the fixed-stress splitting for Biot’s equations. (English) Zbl 07859732

Summary: In this work, we are interested in efficiently solving the quasi-static, linear Biot model for poroelasticity. We consider the fixed-stress splitting scheme, which is a popular method for iteratively solving Biot’s equations. It is well known that the convergence properties of the method strongly depend on the applied stabilization/tuning parameter. We show theoretically that, in addition to depending on the mechanical properties of the porous medium and the coupling coefficient, they also depend on the fluid flow and spatial discretization properties. The type of analysis presented in this paper is not restricted to a particular spatial discretization, although it is required to be inf-sup stable with respect to the displacement-pressure formulation. Furthermore, we propose a way to optimize this parameter that relies on the mesh independence of the scheme’s optimal stabilization parameter. Illustrative numerical examples show that using the optimized stabilization parameter can significantly reduce the number of iterations.
{© 2019 The Authors. International Journal for Numerical Methods in Engineering Published by John Wiley & Sons, Ltd.}

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
76Sxx Flows in porous media; filtration; seepage
76Mxx Basic methods in fluid mechanics

References:

[1] CoussyO. Poromechanics. Hoboken, NJ: John Wiley & Sons; 2004.
[2] NordbottenJM. Stable cell‐centered finite volume discretization for Biot equations. SIAM J Numer Anal. 2016;54(2):942‐968. https://doi.org/10.1137/15M1014280 · Zbl 1382.76187 · doi:10.1137/15M1014280
[3] PhillipsPJ, WheelerMF. A coupling of mixed and continuous Galerkin finite element methods for poroelasticity I: the continuous in time case. Computational Geosciences. 2007;11(2):131. https://doi.org/10.1007/s10596-007-9045-y · Zbl 1117.74015 · doi:10.1007/s10596-007-9045-y
[4] YiS‐Y, BeanML. Iteratively coupled solution strategies for a four‐field mixed finite element method for poroelasticity. Int J Numer Anal Methods Geomech. 2016;41(2):159‐179. https://onlinelibrary.wiley.com/doi/abs/10.1002/nag.2538
[5] BothJW, BorregalesM, NordbottenJM, KumarK, RaduFA. Robust fixed stress splitting for Biot’s equations in heterogeneous media. Appl Math Lett. 2017;68:101‐108. http://www.sciencedirect.com/science/article/pii/S0893965917300034 · Zbl 1383.74025
[6] BergerL, BordasR, KayD, TavenerS. A stabilized finite element method for finite‐strain three‐field poroelasticity. Computational Mechanics. 2017;60(1):51‐68. https://doi.org/10.1007/s00466-017-1381-8 · Zbl 1386.74134 · doi:10.1007/s00466-017-1381-8
[7] LeeJJ. Robust error analysis of coupled mixed methods for Biot’s consolidation model. J Sci Comput. 2016;69(2):610‐632. https://doi.org/10.1007/s10915-016-0210-0 · Zbl 1368.65234 · doi:10.1007/s10915-016-0210-0
[8] HuX, RodrigoC, GasparFJ, ZikatanovLT. A nonconforming finite element method for the Biot’s consolidation model in poroelasticity. J Comput Appl Math. 2017;310:143‐154. http://www.sciencedirect.com/science/article/pii/S0377042716302734 · Zbl 1381.76175
[9] RodrigoC, GasparFJ, HuX, ZikatanovLT. Stability and monotonicity for some discretizations of the Biot’s consolidation model. Comput Methods Appl Mech Eng. 2016;298:183‐204. http://www.sciencedirect.com/science/article/pii/S0045782515003138 · Zbl 1425.74164
[10] ChaabaneN, RivièreB. A splitting‐based finite element method for the Biot poroelasticity system. Comput Math Appl. 2018;75(7):2328‐2337. http://www.sciencedirect.com/science/article/pii/S0898122117307721 · Zbl 1409.76057
[11] ChaabaneN, RivièreB. A sequential discontinuous Galerkin method for the coupling of flow and geomechanics. J Sci Comput. 2018;74(1):375‐395. https://doi.org/10.1007/s10915-017-0443-6 · Zbl 1404.65162 · doi:10.1007/s10915-017-0443-6
[12] SimoniL, SecchiS, SchreflerBA. Numerical difficulties and computational procedures for thermo‐hydro‐mechanical coupled problems of saturated porous media. Computational Mechanics. 2008;43(1):179‐189. https://doi.org/10.1007/s00466-008-0302-2 · Zbl 1310.76100 · doi:10.1007/s00466-008-0302-2
[13] DanaS, WheelerMF. Convergence analysis of fixed stress split iterative scheme for anisotropic poroelasticity with tensor Biot parameter. Computational Geosciences. 2018;22(5):1219‐1230. https://doi.org/10.1007/s10596-018-9748-2 · Zbl 1406.65084 · doi:10.1007/s10596-018-9748-2
[14] CastellettoN, KlevtsovS, HajibeygiH, TchelepiHA. Multiscale two‐stage solver for Biot’s poroelasticity equations in subsurface media. Computational Geosciences. 2018;23(2):207‐224. https://doi.org/10.1007/s10596-018-9791-z · Zbl 1414.76053 · doi:10.1007/s10596-018-9791-z
[15] CastellettoN, HajibeygiH, TchelepiHA. Multiscale finite‐element method for linear elastic geomechanics. J Comput Phys. 2017;331:337‐356. http://www.sciencedirect.com/science/article/pii/S0021999116306362 · Zbl 1378.86014
[16] BauseM, RaduFA, KöcherU. Space‐time finite element approximation of the Biot poroelasticity system with iterative coupling. Comput Methods Appl Mech Eng. 2017;320:745‐768. http://www.sciencedirect.com/science/article/pii/S0045782516316164 · Zbl 1439.74389
[17] ErnA, MeunierS. A posteriori error analysis of Euler‐Galerkin approximations to coupled elliptic‐parabolic problems. ESAIM Math Model Numer Anal. 2009;43(2):353‐375. · Zbl 1166.76036
[18] RahrahM, VermolenF. Monte Carlo assessment of the impact of oscillatory and pulsating boundary conditions on the flow through porous media. Transp Porous Media. 2018;123(1):125‐146. https://link.springer.com/article/10.1007/s11242-018-1028-z
[19] HagaJB, OsnesH, LangtangenHP. On the causes of pressure oscillations in low‐permeable and low‐compressible porous media. Int J Numer Anal Methods Geomech. 2012;36(12):1507‐1522. https://onlinelibrary.wiley.com/doi/abs/10.1002/nag.1062
[20] RodrigoC, HuX, OhmP, AdlerJH, GasparFJ, ZikatanovLT. New stabilized discretizations for poroelasticity and the Stokes’ equations. Comput Methods Appl Mech Eng. 2018;341:467‐484. http://www.sciencedirect.com/science/article/pii/S0045782518303347 · Zbl 1440.76027
[21] KimJ, TchelepiHA, JuanesR. Stability and convergence of sequential methods for coupled flow and geomechanics: fixed‐stress and fixed‐strain splits. Comput Methods Appl Mech Eng. 2011;200(13‐16):1591‐1606. http://www.sciencedirect.com/science/article/pii/S0045782510003786 · Zbl 1228.74101
[22] KimJ, TchelepiHA, JuanesR. Stability and convergence of sequential methods for coupled flow and geomechanics: drained and undrained splits. Comput Methods Appl Mech Eng. 2011;200(23‐24):2094‐2116. http://www.sciencedirect.com/science/article/pii/S0045782511000466 · Zbl 1228.74106
[23] SettariA, MouritsFM. A coupled reservoir and geomechanical simulation system. Soc Petroleum Eng. 1998;3:219‐226.
[24] MikelićA, WheelerMF. Convergence of iterative coupling for coupled flow and geomechanics. Computational Geosciences. 2013;17(3):455‐461. https://doi.org/10.1007/s10596-012-9318-y · Zbl 1392.35235 · doi:10.1007/s10596-012-9318-y
[25] TurskaE, SchreflerBA. On convergence conditions of partitioned solution procedures for consolidation problems. Comput Methods Appl Mech Eng. 1993;106(1‐2):51‐63. http://www.sciencedirect.com/science/article/pii/004578259390184Y · Zbl 0783.76064
[26] TurskaE, WisniewskiK, SchreflerBA. Error propagation of staggered solution procedures for transient problems. Comput Methods Appl Mech Eng. 1994;114(1‐2):177‐188. http://www.sciencedirect.com/science/article/pii/0045782594901686
[27] BothJW, KöcherU. Numerical investigation on the fixed‐stress splitting scheme for Biot’s equations: Optimality of the tuning parameter. In: Numerical Mathematics and Advanced Applications ENUMATH 2017. Cham, Switzerland: Springer; 2019:789‐797. · Zbl 1425.76132
[28] MikelićA, WangB, WheelerMF. Numerical convergence study of iterative coupling for coupled flow and geomechanics. Computational Geosciences. 2014;18(3‐4):325‐341. https://doi.org/10.1007/s10596-013-9393-8 · Zbl 1386.76115 · doi:10.1007/s10596-013-9393-8
[29] DanaS, GanisB, WheelerMF. A multiscale fixed stress split iterative scheme for coupled flow and poromechanics in deep subsurface reservoirs. J Comput Phys. 2018;352:1‐22. http://www.sciencedirect.com/science/article/pii/S002199911730709X · Zbl 1375.76085
[30] BauseM. Iterative coupling of mixed and discontinuous Galerkin methods for poroelasticity. In: Numerical Mathematics and Advanced Applications ENUMATH 2017. Cham, Switzerland: Springer; 2019:551‐560. · Zbl 1425.76127
[31] StorvikE, BothJW, KumarK, NordbottenJM, RaduFA. On the optimization of the fixed‐stress splitting for Biot’s equations. arXiv preprint arXiv:1811.06242. 2018.
[32] BorregalesM, RaduFA, KumarK, NordbottenJM. Robust iterative schemes for non���linear poromechanics. Computational Geosciences. 2018;22(4):1021‐1038. https://doi.org/10.1007/s10596-018-9736-6 · Zbl 1402.65109 · doi:10.1007/s10596-018-9736-6
[33] BothJW, KumarK, NordbottenJM, RaduFA. Anderson accelerated fixed‐stress splitting schemes for consolidation of unsaturated porous media. Comput Math Appl. 2019;77(6):1479‐1502. http://www.sciencedirect.com/science/article/pii/S0898122118304048 · Zbl 1442.65251
[34] BothJW, KumarK, NordbottenJM, RaduFA. Iterative methods for coupled flow and geomechanics in unsaturated porous media. Poromechanics VI. 2017:411‐418. https://ascelibrary.org/doi/abs/10.1061/9780784480779.050
[35] HongQ, KrausJ, LymberyM, PhiloF. Conservative discretizations and parameter‐robust preconditioners for Biot and multiple‐network flux‐based poroelastic models. arXiv preprint arXiv: 1806.00353v2. 2018.
[36] LeeJJ, PiersantiE, MardalK‐A, RognesME. A mixed finite element method for nearly incompressible multiple‐network poroelasticity. SIAM J Sci Comput. 2019;41(2):A722‐A747. https://doi.org/10.1137/18M1182395 · Zbl 1417.65162 · doi:10.1137/18M1182395
[37] KimJ. A new numerically stable sequential algorithm for coupled finite‐strain elastoplastic geomechanics and flow. Comput Methods Appl Mech Eng. 2018;335:538‐562. · Zbl 1440.74408
[38] GiraultV, KumarK, WheelerMF. Convergence of iterative coupling of geomechanics with flow in a fractured poroelastic medium. Computational Geosciences. 2016;20(5):997‐1011. https://doi.org/10.1007/s10596-016-9573-4 · Zbl 1391.76650 · doi:10.1007/s10596-016-9573-4
[39] GiovanardiB, FormaggiaL, ScottiA, ZuninoP. Unfitted FEM for modelling the interaction of multiple fractures in a poroelastic medium. In: BordasSPA (ed.), BurmanE (ed.), LarsonMG (ed.), OlshanskiiMA (ed.), eds. Geometrically Unfitted Finite Element Methods and Applications. Cham, Switzerland: Springer International Publishing; 2017:331‐352. · Zbl 1390.74179
[40] LeeS, WheelerMF, WickT. Iterative coupling of flow, geomechanics and adaptive phase‐field fracture including level‐set crack width approaches. J Comput Appl Math. 2017;314:40‐60. http://www.sciencedirect.com/science/article/pii/S0377042716305118 · Zbl 1388.76140
[41] ListF, RaduFA. A study on iterative methods for solving richards’ equation. Computational Geosciences. 2016;20(2):341‐353. https://doi.org/10.1007/s10596-016-9566-3 · Zbl 1396.65143 · doi:10.1007/s10596-016-9566-3
[42] PopIS, RaduFA, KnabnerP. Mixed finite elements for the richards’ equation: linearization procedure. J Comput Appl Math. 2004;168(1):365‐373. http://www.sciencedirect.com/science/article/pii/S037704270301001X · Zbl 1057.76034
[43] AlmaniT, KumarK, DogruA, SinghG, WheelerMF. Convergence analysis of multirate fixed‐stress split iterative schemes for coupling flow with geomechanics. Comput Methods Appl Mech Eng. 2016;311:180‐207. http://www.sciencedirect.com/science/article/pii/S0045782516308180 · Zbl 1439.74183
[44] BorregalesM, KumarK, RaduFA, RodrigoC, GasparFJ. A partially parallel‐in‐time fixed‐stress splitting method for Biot’s consolidation model. Comput Math Appl. 2018;77(6):1466‐1478. http://www.sciencedirect.com/science/article/pii/S0898122118305091 · Zbl 1442.65250
[45] BoffiD, BrezziF, FortinM. Mixed Finite Element Methods and Applications. Berlin, Germany: Springer; 2013. Springer Series in Computational Mathematics; vol. 44. · Zbl 1277.65092
[46] AdlerJH, GasparFJ, HuX, RodrigoC, ZikatanovLT. Robust block preconditioners for Biot’s model. In: Domain Decomposition Methods in Science and Engineering XXIV. Cham, Switzerland: Springer; 2017:3‐16. · Zbl 1442.65342
[47] BlattM, BurchardtA, DednerA, et al. The distributed and unified numerics environment, version 2.4. Arch Numer Softw. 2016;4(100):13‐29.
[48] EngwerC, GräserC, MüthingS, SanderO. The interface for functions in the dune‐functions module. arXiv preprint arXiv:1512.06136. 2015.
[49] EngwerC, GräserC, MüthingS, SanderO. Function space bases in the dune‐functions module. arXiv preprint arXiv:1806.09545. 2018.
[50] AbousleimanY, ChengAH‐D, CuiL, DetournayE, RoegiersJ‐C. Mandel’s problem revisited. Géotechnique. 1996;46(2):187‐195. https://doi.org/10.1680/geot.1996.46.2.187 · doi:10.1680/geot.1996.46.2.187
[51] ArnoldDN, BrezziF, FortinM. A stable finite element for the stokes equations. CALCOLO. 1984;21(4):337‐344. https://doi.org/10.1007/BF02576171 · Zbl 0593.76039 · doi:10.1007/BF02576171
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.