×

Using poro-elasticity to model the large deformation of tissue during subcutaneous injection. (English) Zbl 1506.74109

Summary: Subcutaneous injection of therapeutic monoclonal antibodies (mAbs) has recently attracted unprecedented interests in the pharmaceutical industry. The drug transport in the tissue and mechanical response of the tissue after injection are not yet well-understood. We are motivated to study subcutaneous injection using poro-elasticity, including linear and nonlinear poro-elastic models. We first present the fixed-stress split of the nonlinear model and perform convergence studies under spatial and temporal refinements. We then investigate the model assumption of the linear model using numerical solutions. In the case of small permeability, the linear model is not adequate to account for the large deformation of the tissue due to injection. Next, we adopt a nonlinear poro-elastic model to study subcutaneous injection. For large deformation, numerical solutions of the nonlinear model differ significantly from that of the linear model, especially near the injection site.

MSC:

74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74L15 Biomechanical solid mechanics

Software:

IPACS; deal.ii
Full Text: DOI

References:

[1] Dimitrov, D. S., Therapeutic proteins, (Therapeutic Proteins (2012), Springer), 1-26
[2] Haller, M. F., Converting intravenous dosing to subcutaneous dosing with recombinant human hyaluronidase, Pharm. Tech., 31, 861-864 (2007)
[3] Jackisch, C.; Müller, V.; Maintz, C.; Hell, S.; Ataseven, B., Subcutaneous administration of monoclonal antibodies in oncology, Geburtshilfe Frauenheilkunde, 74, 4, 343 (2014)
[4] Porter, C.; Edwards, G.; Charman, S. A., Lymphatic transport of proteins after sc injection: implications of animal model selection, Adv. Drug Deliv. Rev., 50, 1-2, 157-171 (2001)
[5] Shpilberg, O.; Jackisch, C., Subcutaneous administration of rituximab (MabThera) and trastuzumab (Herceptin) using hyaluronidase, Br. J. Cancer, 109, 6, 1556-1561 (2013)
[6] Comley, K.; Fleck, N., Deep penetration and liquid injection into adipose tissue, J. Mech. Mater. Struct., 6, 1, 127-140 (2011)
[7] Kang, D.; Oh, D.; Fu, G.; Anderson, J.; Zepeda, M., Porcine model to evaluate local tissue tolerability associated with subcutaneous delivery of protein, J. Pharmacol. Toxicol. Methods, 67, 3, 140-147 (2013)
[8] Malandrino, A.; Moeendarbary, E., Poroelasticity of living tissues, (Encyclopedia of Biomedical Engineering, Vol. 2 (2019), Elsevier), 238-245
[9] Simon, B. R., Multiphase poroelastic finite element models for soft tissue structures, Appl. Mech. Rev., 45, 6, 191-218 (1992)
[10] Comellas, E.; Budday, S.; Pelteret, J.-P.; Holzapfel, G. A.; Steinmann, P., Modeling the porous and viscous responses of human brain tissue behavior, Comput. Methods Appl. Mech. Engrg., 369, Article 113128 pp. (2020) · Zbl 1506.74204
[11] Ehlers, W.; Wagner, A., Constitutive and computational aspects in tumor therapies of multiphasic brain tissue, (Computer Models in Biomechanics (2013), Springer), 263-276
[12] Ehlers, W.; Wagner, A., Multi-component modelling of human brain tissue: a contribution to the constitutive and computational description of deformation, flow and diffusion processes with application to the invasive drug-delivery problem, Comput. Methods Biomech. Biomed. Eng., 18, 8, 861-879 (2015)
[13] de Rooij, R.; Kuhl, E., Constitutive modeling of brain tissue: current perspectives, Appl. Mech. Rev., 68, 1 (2016)
[14] M. de Lucio, M. Bures, A.M. Ardekani, P.P. Vlachos, H. Gomez, Isogeometric analysis of subcutaneous injection of monoclonal antibodies, Comput. Methods Appl. Mech. Eng., 373, 113550. · Zbl 1506.76070
[15] Ehlers, W.; Karajan, N.; Markert, B., An extended biphasic model for charged hydrated tissues with application to the intervertebral disc, Biomech. Model. Mechanobiol., 8, 3, 233 (2009)
[16] Holzapfel, G. A.; Ogden, R. W., Biomechanics: Trends in Modeling and Simulation, Vol. 316 (2017), Springer · Zbl 1370.92012
[17] Ehlers, W., Porous Media: Theory, Experiments and Numerical Applications (2002), Springer Science & Business Media · Zbl 1001.00011
[18] Hirsch, S., A biphasic poroelasticity model for soft tissue, (Quantification of Biophysical Parameters in Medical Imaging (2018), Springer), 71-88
[19] Biot, M. A., General theory of three-dimensional consolidation, J. Appl. Phys., 12, 2, 155-164 (1941) · JFM 67.0837.01
[20] Biot, M. A., Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range, J. Acoust. Soc. Am., 28, 2, 179-191 (1956)
[21] Biot, M. A.; Temple, G., Theory of finite deformations of porous solids, Indiana Univ. Math. J., 21, 7, 597-620 (1972) · Zbl 0229.76065
[22] Calvo-Gallego, J. L.; Domínguez, J.; Cía, T. G.; Ciriza, G. G.; Martínez-Reina, J., Comparison of different constitutive models to characterize the viscoelastic properties of human abdominal adipose tissue. A pilot study, J. Mech. Behav. Biomed. Mater., 80, 293-302 (2018)
[23] Comley, K.; Fleck, N., The compressive response of porcine adipose tissue from low to high strain rate, Int. J. Impact Eng., 46, 1-10 (2012)
[24] Patel, P. N.; Smith, C. K.; Patrick Jr, C. W., Rheological and recovery properties of poly (ethylene glycol) diacrylate hydrogels and human adipose tissue, J. Biomed. Mater. Res. A, 73, 3, 313-319 (2005)
[25] Sims, A. M.; Stait-Gardner, T.; Fong, L.; Morley, J. W.; Price, W. S.; Hoffman, M.; Simmons, A.; Schindhelm, K., Elastic and viscoelastic properties of porcine subdermal fat using MRI and inverse FEA, Biomech. Model. Mechanobiol., 9, 6, 703-711 (2010)
[26] Sun, Z.; Lee, S.-H.; Gepner, B. D.; Rigby, J.; Hallman, J. J.; Kerrigan, J. R., Comparison of porcine and human adipose tissue loading responses under dynamic compression and shear: A pilot study, J. Mech. Behav. Biomed. Mater., 113, Article 104112 pp. (2021)
[27] Sommer, G.; Eder, M.; Kovacs, L.; Pathak, H.; Bonitz, L.; Mueller, C.; Regitnig, P.; Holzapfel, G. A., Multiaxial mechanical properties and constitutive modeling of human adipose tissue: a basis for preoperative simulations in plastic and reconstructive surgery, Acta Biomater., 9, 11, 9036-9048 (2013)
[28] Kim, J.; Tchelepi, H. A.; Juanes, R., Stability and convergence of sequential methods for coupled flow and geomechanics: Fixed-stress and fixed-strain splits, Comput. Methods Appl. Mech. Engrg., 200, 13-16, 1591-1606 (2011) · Zbl 1228.74101
[29] Kim, J.; Tchelepi, H. A.; Juanes, R., Stability, accuracy and efficiency of sequential methods for coupled flow and geomechanics, (SPE Reservoir Simulation Symposium (2009), Society of Petroleum Engineers) · Zbl 1228.74106
[30] Mikelić, A.; Wang, B.; Wheeler, M. F., Numerical convergence study of iterative coupling for coupled flow and geomechanics, Comput. Geosci., 18, 3-4, 325-341 (2014) · Zbl 1386.76115
[31] Mikelić, A.; Wheeler, M. F., Convergence of iterative coupling for coupled flow and geomechanics, Comput. Geosci., 17, 3, 455-461 (2013) · Zbl 1392.35235
[32] Irzal, F.; Remmers, J. J.; Verhoosel, C. V.; de Borst, R., Isogeometric finite element analysis of poroelasticity, Int. J. Numer. Anal. Methods Geomech., 37, 12, 1891-1907 (2013)
[33] Rahrah, M.; Vermolen, F., A moving finite element framework for fast infiltration in nonlinear poroelastic media, Comput. Geosci.: Model. Simul. Data Anal. (2020)
[34] Reverón, M. A.B.; Kumar, K.; Nordbotten, J. M.; Radu, F. A., Iterative solvers for Biot model under small and large deformations, Comput. Geosci., 1-13 (2020)
[35] Auton, L. C.; MacMinn, C. W., From arteries to boreholes: transient response of a poroelastic cylinder to fluid injection, Proc. R. Soc. A, 474, 2216, Article 20180284 pp. (2018) · Zbl 1404.76250
[36] Bertrand, T.; Peixinho, J.; Mukhopadhyay, S.; MacMinn, C. W., Dynamics of swelling and drying in a spherical gel, Phys. Rev. A, 6, 6, Article 064010 pp. (2016)
[37] MacMinn, C. W.; Dufresne, E. R.; Wettlaufer, J. S., Large deformations of a soft porous material, Phys. Rev. A, 5, 4, Article 044020 pp. (2016)
[38] Ehlers, W.; Eipper, G., Finite elastic deformations in liquid-saturated and empty porous solids, (Porous Media: Theory and Experiments (1999), Springer), 179-191
[39] Coussy, O., Poromechanics (2004), John Wiley & Sons
[40] Marsden, J. E.; Hughes, T. J., Mathematical Foundations of Elasticity (1994), Courier Corporation
[41] van Duijn, C. J.; Mikelić, A.; Wick, T., A monolithic phase-field model of a fluid-driven fracture in a nonlinear poroelastic medium, Math. Mech. Solids, 24, 5, 1530-1555 (2019) · Zbl 1446.74203
[42] Van Duijn, C.; Mikelic, A., Mathematical theory of nonlinear single-phase poroelasticity (2019), Preprint hal-02144933, Lyon June
[43] Budday, S.; Sommer, G.; Birkl, C.; Langkammer, C.; Haybaeck, J.; Kohnert, J.; Bauer, M.; Paulsen, F.; Steinmann, P.; Kuhl, E., Mechanical characterization of human brain tissue, Acta Biomater., 48, 319-340 (2017)
[44] Ogden, R. W., Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 326, 1567, 565-584 (1972) · Zbl 0257.73034
[45] Arndt, D.; Bangerth, W.; Blais, B.; Clevenger, T. C.; Fehling, M.; Grayver, A. V.; Heister, T.; Heltai, L.; Kronbichler, M.; Maier, M.; Munch, P.; Pelteret, J.-P.; Rastak, R.; Thomas, I.; Turcksin, B.; Wang, Z.; Wells, D., The library, version 9.2, J. Numer. Math., 28, 3, 131-146 (2020), URL https://dealii.org/deal92-preprint.pdf · Zbl 1452.65222
[46] Bangerth, W.; Hartmann, R.; Kanschat, G., deal.II - a General purpose object oriented finite element library, ACM Trans. Math. Software, 33, 4, 24/1-24/27 (2007) · Zbl 1365.65248
[47] Bause, M.; Radu, F. A.; Köcher, U., Space-time finite element approximation of the Biot poroelasticity system with iterative coupling, Comput. Methods Appl. Mech. Engrg., 320, 745-768 (2017) · Zbl 1439.74389
[48] Shovkun, I.; Espinoza, D. N., Fracture propagation in heterogeneous porous media: pore-scale implications of mineral dissolution, Rock Mech. Rock Eng., 52, 9, 3197-3211 (2019)
[49] Shovkun, I.; Espinoza, D. N., Propagation of toughness-dominated fluid-driven fractures in reactive porous media, Int. J. Rock Mech. Min. Sci., 118, 42-51 (2019)
[50] Wheeler, M. F.; Wick, T.; Lee, S., IPACS: Integrated phase-field advanced crack propagation simulator. An adaptive, parallel, physics-based-discretization phase-field framework for fracture propagation in porous media, Comput. Methods Appl. Mech. Engrg., 367, Article 113124 pp. (2020) · Zbl 1442.74216
[51] Lu, X.; Wheeler, M. F., Three-way coupling of multiphase flow and poromechanics in porous media, J. Comput. Phys., 401, Article 109053 pp. (2020) · Zbl 1453.76080
[52] Lee, S.; Wheeler, M. F.; Wick, T., Iterative coupling of flow, geomechanics and adaptive phase-field fracture including level-set crack width approaches, J. Comput. Appl. Math., 314, 40-60 (2017) · Zbl 1388.76140
[53] Mikelić, A.; Wheeler, M.; Wick, T., Phase-field modeling through iterative splitting of hydraulic fractures in a poroelastic medium, GEM-Int. J. Geomath., 10, 1, 2 (2019) · Zbl 1419.74216
[54] Lee, S.; Wheeler, M. F.; Wick, T., Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model, Comput. Methods Appl. Mech. Engrg., 305, 111-132 (2016) · Zbl 1425.74419
[55] Sacado Project Team, T., The sacado project website (2020), URL https://trilinos.github.io/sacado.html
[56] Badkar, A. V.; Gandhi, R. B.; Davis, S. P.; LaBarre, M. J., Subcutaneous delivery of high-dose/volume biologics: Current status and prospect for future advancements, Drug Des. Dev. Therapy, 15, 159 (2021)
[57] Bittner, B.; Richter, W.; Schmidt, J., Subcutaneous administration of biotherapeutics: an overview of current challenges and opportunities, BioDrugs, 32, 5, 425-440 (2018)
[58] Mathaes, R.; Koulov, A.; Joerg, S.; Mahler, H.-C., Subcutaneous injection volume of biopharmaceuticals—pushing the boundaries, J. Pharm. Sci., 105, 8, 2255-2259 (2016)
[59] Usach, I.; Martinez, R.; Festini, T.; Peris, J.-E., Subcutaneous injection of drugs: literature review of factors influencing pain sensation at the injection site, Adv. Ther., 36, 11, 2986-2996 (2019)
[60] Guyton, A. C.; Scheel, K.; Murphree, D., Interstitial fluid pressure: III. Its effect on resistance to tissue fluid mobility, Circ. Res., 19, 2, 412-419 (1966)
[61] Kim, H.; Park, H.; Lee, S. J., Effective method for drug injection into subcutaneous tissue, Sci. Rep., 7, 1, 1-11 (2017)
[62] Reddy, N. P.; Cochran, G. V.B.; Krouskop, T. A., Interstitial fluid flow as a factor in decubitus ulcer formation, J. Biomech., 14, 12, 879-881 (1981)
[63] Thomsen, M.; Hernandez-Garcia, A.; Mathiesen, J.; Poulsen, M.; Sørensen, D. N.; Tarnow, L.; Feidenhans, R., Model study of the pressure build-up during subcutaneous injection, PLoS One, 9, 8, Article e104054 pp. (2014)
[64] Geerligs, M.; Peters, G. W.; Ackermans, P. A.; Oomens, C. W.; Baaijens, F., Linear viscoelastic behavior of subcutaneous adipose tissue, Biorheology, 45, 6, 677-688 (2008)
[65] Girault, V.; Wheeler, M. F.; Almani, T.; Dana, S., A priori error estimates for a discretized poro-elastic-elastic system solved by a fixed-stress algorithm, Oil Gas Sci. Technol.-Rev. IFP Energies nouvelles, 74, 24 (2019)
[66] Kot, B. C.W.; Zhang, Z. J.; Lee, A. W.C.; Leung, V. Y.F.; Fu, S. N., Elastic modulus of muscle and tendon with shear wave ultrasound elastography: variations with different technical settings, PLoS One, 7, 8, Article e44348 pp. (2012)
[67] Agache, P. G.; Monneur, C.; Leveque, J. L.; De Rigal, J., Mechanical properties and Young’s modulus of human skin in vivo, Arch. Dermatol. Res., 269, 3, 221-232 (1980)
[68] Pailler-Mattei, C.; Bec, S.; Zahouani, H., In vivo measurements of the elastic mechanical properties of human skin by indentation tests, Med. Eng. Phys., 30, 5, 599-606 (2008)
[69] Muraki, S.; Fukumoto, K.; Fukuda, O., Prediction of the muscle strength by the muscle thickness and hardness using ultrasound muscle hardness meter, Springerplus, 2, 1, 1-7 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.