×

Approximation by mixed operators of max-product-Choquet type. (English) Zbl 1496.41011

Daras, Nicholas J. (ed.) et al., Approximation and computation in science and engineering. Cham: Springer. Springer Optim. Appl. 180, 297-332 (2022).
Summary: The main aim of this chapter is to introduce several mixed operators between Choquet integral operators and max-product operators and to study their approximation, shape preserving, and localization properties. Section 2 contains some preliminaries on the Choquet integral. In Sect. 3, we obtain quantitative estimates in uniform and pointwise approximation for the following mixed type operators: max-product Bernstein-Kantorovich-Choquet operator, max-product Szász-Mirakjan-Kantorovich-Choquet operators, nontruncated and truncated cases, and max-product Baskakov-Kantorovich-Choquet operators, nontruncated and truncated cases. We show that for large classes of functions, the max-product Bernstein-Kantorovich-Choquet operators approximate better than their classical correspondents, and we construct new max-product Szász-Mirakjan-Kantorovich-Choquet and max-product Baskakov-Kantorovich-Choquet operators, which approximate uniformly \(f\) in each compact subinterval of \([0, +\infty)\) with the order \(\omega_1(f; \sqrt{\lambda_n})\), where \(\lambda_n \searrow 0\) arbitrary fast. Also, shape preserving and localization results for max-product Bernstein-Kantorovich-Choquet operators are obtained. Section 4 contains quantitative approximation results for discrete max-product Picard-Kantorovich-Choquet, discrete max-product Gauss-Weierstrass-Kantorovich-Choquet operators, and discrete max-product Poisson-Cauchy-Kantorovich-Choquet operators. Section 5 deals with the approximation properties of the max-product Kantorovich-Choquet operators based on \((\varphi, \psi)\)-kernels. It is worth to mention that with respect to their max-product correspondents, while they keep their good properties, the mixed max-product Choquet operators present, in addition, the advantage of a great flexibility by the many possible choices for the families of set functions used in their definitions. The results obtained present potential applications in sampling theory, neural networks, and learning theory.
For the entire collection see [Zbl 1485.65002].

MSC:

41A36 Approximation by positive operators
41A25 Rate of convergence, degree of approximation
41A35 Approximation by operators (in particular, by integral operators)
28C99 Set functions and measures on spaces with additional structure
Full Text: DOI

References:

[1] F. Altomare, M. Campiti, Korovkin-Type Approximation Theory and its Applications. de Gruyter Studies in Mathematics, vol. 17 (Walter de Gruyter, New York, 1994) · Zbl 0924.41001
[2] Altomare, F.; Cappelletti Montano, M.; Leonessa, V., On a generalization of Szász- Mirakjan-Kantorovich operators, Results Math., 63, 837-863 (2013) · Zbl 1272.41003 · doi:10.1007/s00025-012-0236-z
[3] Bede, B.; Coroianu, L.; Gal, SG, Approximation by Max-Product Type Operators (2016), New York: Springer, New York · Zbl 1358.41013 · doi:10.1007/978-3-319-34189-7
[4] Butzer, PL, On the extensions of Bernstein polynomials to the infinite interval, Proc. Amer. Math. Soc., 5, 4, 547-553 (1954) · Zbl 0056.28703 · doi:10.1090/S0002-9939-1954-0063483-7
[5] Choquet, G., Theory of capacities, Ann. Inst. Fourier (Grenoble), 5, 131-295 (1954) · Zbl 0064.35101 · doi:10.5802/aif.53
[6] Coroianu, L.; Gal, SG; Opris, BD; Trifa, S., Feller’s scheme in approximation by nonlinear possibilistic integral operators, Numer. Funct. Anal. Optim., 38, 3, 327-343 (2017) · Zbl 1364.41013 · doi:10.1080/01630563.2017.1279174
[7] Coroianu, L.; Costarelli, D.; Gal, SG; Vinti, G., The max-product generalized sampling operators: convergence and quantitative estimates, Appl. Math. Comput., 355, 173-183 (2019) · Zbl 1428.41018
[8] Coroianu, L.; Costarelli, D.; Gal, SG; Vinti, G., Approximation by multivariate max-product Kantorovich-type operators and learning rates of least-squares regularized regression, Commun. Pure Appl. Analy., 19, 8, 4213-4225 (2020) · Zbl 1472.41011 · doi:10.3934/cpaa.2020189
[9] Coroianu, L.; Costarelli, D.; Gal, SG; Vinti, G., Approximation by max-product sampling Kantorovich operators with generalized kernels, Analy. Appli., 19, 219-244 (2021) · Zbl 1464.41004 · doi:10.1142/S0219530519500155
[10] Coroianu, L.; Gal, SG, L^p-approximation by truncated max-product sampling operators of Kantorovich-type based on Fejér kernel, J. Integral Eq. Appl., 29, 2, 349-364 (2017) · Zbl 1371.41016
[11] Coroianu, L.; Gal, SG, Approximation by truncated max-product operators of Kantorovich-type based on generalized (φ, ψ)-kernels, Math. Methods Appl. Sci., 41, 17, 7971-7984 (2018) · Zbl 1405.41012 · doi:10.1002/mma.5262
[12] Coroianu, L.; Gal, SG, Approximation by max-product operators of Kantorovich type, Stud. Univ. Babes-Bolyai Math., 64, 2, 207-223 (2019) · Zbl 1438.41024 · doi:10.24193/subbmath.2019.2.07
[13] D. Costarelli, A.R. Sambucini, Approximation results in Orlicz spaces for sequences of Kantorovich max-product neural network operators. Results Math. 73(1) (2018). doi:10.1007/s00025-018-0799-4 · Zbl 1390.41019
[14] Costarelli, D.; Vinti, G., Max-product neural network and quasi interpolation operators activated by sigmoidal functions, J. Approx. Theory, 209, 1-22 (2016) · Zbl 1350.41001 · doi:10.1016/j.jat.2016.05.001
[15] Costarelli, D.; Vinti, G., Approximation by max-product neural network operators of Kantorovich type, Results Math., 69, 3, 505-519 (2016) · Zbl 1355.41009 · doi:10.1007/s00025-016-0546-7
[16] Costarelli, D.; Vinti, G., Pointwise and uniform approximation by multivariate neural network operators of the max-product type, Neural Netw., 81, 81-90 (2016) · Zbl 1439.41009 · doi:10.1016/j.neunet.2016.06.002
[17] Costarelli, D.; Vinti, G., Saturation classes for max-product neural network operators activated by sigmoidal functions, Results Math., 72, 3, 1555-1569 (2017) · Zbl 1376.41014 · doi:10.1007/s00025-017-0692-6
[18] Costarelli, D.; Vinti, G., Convergence results for a family of Kantorovich max-product neural network operators in a multivariate setting, Math. Slovaca, 67, 6, 1469-1480 (2017) · Zbl 1505.41005 · doi:10.1515/ms-2017-0063
[19] D. Costarelli, G. Vinti, Estimates for the neural network operators of the max-product type with continuous and p-integrable functions. Results Math. 73(1), Art. 12 (2018). doi:10.1007/s00025-018-0790-0 · Zbl 1390.41020
[20] D. Costarelli, A.R. Sambucini, G. Vinti, Convergence in Orlicz spaces by means of the multivariate max-product neural network operators of the Kantorovich type and applications. Neural Comput. Appl. (2019). doi:10.1007/s00521-018-03998-6
[21] Denneberg, D., Non-additive Measure and Integral (1994), Dordrecht: Kluwer Academic Publisher, Dordrecht · Zbl 0826.28002 · doi:10.1007/978-94-017-2434-0
[22] DeVore, RA; Lorentz, GG, Constructive Approximation (1993), Berlin: Springer, Berlin · Zbl 0797.41016 · doi:10.1007/978-3-662-02888-9
[23] Duman, O., Statistical convergence of max-product approximating operators, Turkish J. Math., 34, 4, 501-514 (2010) · Zbl 1204.26050
[24] Gal, SG, Approximation with an arbitrary order by generalized Szász-Mirakjan operators, Stud. Univ. Babes-Bolyai Math., 59, 77-81 (2014) · Zbl 1349.41038
[25] Gal, SG, A possibilistic approach of the max-product Bernstein kind operators, Results Math., 65, 3-4, 453-462 (2014) · Zbl 1293.41010 · doi:10.1007/s00025-013-0357-z
[26] Gal, SG, Approximation by Choquet integral operators, Ann. Mat. Pura Appl., 195, 3, 881-896 (2016) · Zbl 1342.41027 · doi:10.1007/s10231-015-0495-x
[27] S.G. Gal, Uniform and pointwise quantitative approximation by Kantorovich-Choquet type integral operators with respect to monotone and submodular set functions. Mediterr. J. Math. 14(5), Paper No. 205, 12 (2017) · Zbl 1376.41018
[28] S.G. Gal, Quantitative approximation by nonlinear Picard-Choquet, Gauss-Weierstrass-Choquet and Poisson-Cauchy-Choquet singular integrals. Results Math. 73(3), Paper No. 92, 23 (2018) · Zbl 1400.41016
[29] Gal, SG, Shape preserving properties and monotonicity properties of the sequences of Choquet type integral operators, J. Numer. Anal. Approx. Theory, 47, 2, 135-149 (2018) · Zbl 1463.41032
[30] Gal, SG, Quantitative approximation by Stancu-Durrmeyer-Choquet-S ipos  operators, Math. Slovaca, 69, 3, 625-638 (2019) · Zbl 1505.41016 · doi:10.1515/ms-2017-0252
[31] S.G. Gal, Correction to: Quantitative approximation by nonlinear Picard-Choquet, Gauss-Weierstrass-Choquet and Poisson-Cauchy-Choquet singular integrals. Results Math. 75(1), Paper No. 31, 3 (2020) · Zbl 1457.41014
[32] Gal, SG; Iancu, IT, Quantitative approximation by nonlinear convolution operators of Landau-Choquet type, Carpath. J. Math., 36, 3, 415-422 (2020) · Zbl 1488.41050 · doi:10.37193/CJM.2020.03.09
[33] Gal, SG; Iancu, IT, Quantitative approximation by nonlinear Angheluţă-Choquet singular integrals, J. Numer. Anal. Approx. Theory, 49, 1, 54-65 (2020) · Zbl 1499.41060
[34] Gal, SG; Opris, BD, Uniform and pointwise convergence of Bernstein-Durrmeyer operators with respect to monotone and submodular set functions, J. Math. Anal. Appl., 424, 1374-1379 (2015) · Zbl 1305.41028 · doi:10.1016/j.jmaa.2014.12.012
[35] Gal, SG; Opris, BD, Approximation with an arbitrary order by modified Baskakov type operators, Appl. Math. Comp., 265, 329-332 (2015) · Zbl 1410.41032 · doi:10.1016/j.amc.2015.05.034
[36] Gal, SG; Trifa, S., Quantitative estimates in uniform and pointwise approximation by Bernstein-Durrmeyer-Choquet operators, Carpath. J. Math., 33, 49-58 (2017) · Zbl 1399.41043 · doi:10.37193/CJM.2017.01.06
[37] Gal, SG; Trifa, S., Quantitative estimates in L^p-approximation by Bernstein-Durrmeyer-Choquet operators with respect to distorted Borel measures, Results Math., 72, 3, 1405-1415 (2017) · Zbl 1379.41018 · doi:10.1007/s00025-017-0759-4
[38] Gal, SG; Trifa, S., Quantitative estimates for L^p-approximation by Bernstein-Kantorovich-Choquet polynomials with respect to distorted Lebesgue measures, Constr. Math. Analys., 2, 1, 15-21 (2019) · Zbl 1463.41038 · doi:10.33205/cma.481186
[39] T.Y. Gökcer, O. Duman, Summation process by max-product operators, in Computational Analysis. Springer Proceedings in Mathematics & Statistics, vol. 155, (Springer, Cham, 2016), pp. 59-67 · Zbl 1355.41017
[40] Güngör, SY; Ispir, N., Approximation by Bernstein-Chlodowsky operators of max-product kind, Math. Commun., 23, 205-225 (2018) · Zbl 1423.41024
[41] V. Gupta, M.Th. Rassias, Moments of Linear Positive Operators and Approximation. SpringerBriefs in Mathematics (Springer, Cham, 2019), VIII+96 pp. · Zbl 1448.41001
[42] Holhos, A., Weighted approximation of functions by Meyer-König and Zeller operators of max-product type, Numer. Funct. Anal. Optim., 39, 6, 689-703 (2018) · Zbl 1388.41015 · doi:10.1080/01630563.2017.1413386
[43] Holhos, A., Weighted approximation of functions by Favard operators of max-product type, Period. Math. Hungar., 77, 2, 340-346 (2018) · Zbl 1413.41027 · doi:10.1007/s10998-018-0249-9
[44] Holhos, A., Approximation of functions by Favard-Szász-Mirakyan operators of max-product type in weighted spaces, Filomat, 32, 7, 2567-2576 (2018) · Zbl 1499.41066 · doi:10.2298/FIL1807567H
[45] Holhos, A., Approximation of functions by some exponential operators of max-product type, Studia Sci. Math. Hungar., 56, 1, 94-102 (2019) · Zbl 1438.41020
[46] L.V. Kantorovich, Sur certains developpements suivant les polynômes de la forme de S. N. Bernstein. C.R. Acad. Sci. URSS I, II 563-568, 595-600 (1930) · JFM 57.1393.02
[47] Karakus, S.; Demirci, K., Statistical σ-approximation to max-product operators, Comput. Math. Appl., 61, 4, 1024-1031 (2011) · Zbl 1217.41025 · doi:10.1016/j.camwa.2010.12.052
[48] R.-H. Shen, L.-Y. Wei, Convexity of functions produced by Bernstein operators of max-product kind. Results Math. 74(3), Art. 92 (2019) · Zbl 1423.41036
[49] T. Yurdakadim, E. Taş, Some results for max-product operators via power series method. Acta Math. Univ. Comenian. (N.S.) 87(2), 191-198 (2018) · Zbl 1424.40046
[50] Wang, Z.; Klir, G., Generalized Measure Theory (2009), New York: Springer, New York · Zbl 1184.28002 · doi:10.1007/978-0-387-76852-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.