×

On uniqueness of measure-valued solutions to Liouville’s equation of Hamiltonian PDEs. (English) Zbl 1374.35404

Summary: In this paper, the Cauchy problem of classical Hamiltonian PDEs is recast into a Liouville’s equation with measure-valued solutions. Then a uniqueness property for the latter equation is proved under some natural assumptions. Our result extends the method of characteristics to Hamiltonian systems with infinite degrees of freedom and it applies to a large variety of Hamiltonian PDEs (Hartree, Klein-Gordon, Schrödinger, Wave, Yukawa \(\dots\)). The main arguments in the proof are a projective point of view and a probabilistic representation of measure-valued solutions to continuity equations in finite dimension.

MSC:

35Q82 PDEs in connection with statistical mechanics
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
35Q55 NLS equations (nonlinear Schrödinger equations)
35Q61 Maxwell equations
37K05 Hamiltonian structures, symmetries, variational principles, conservation laws (MSC2010)
28A33 Spaces of measures, convergence of measures
Full Text: DOI

References:

[1] R. Adami, Towards a rigorous derivation of the cubic NLSE in dimension one,, Asymptot. Anal., 40, 93 (2004) · Zbl 1069.35082
[2] L. Ambrosio, Continuity equations and ODE flows with non-smooth velocity,, Proc. Roy. Soc. Edinburgh Sect. A, 144, 1191 (2014) · Zbl 1358.37046 · doi:10.1017/S0308210513000085
[3] L. Ambrosio, On flows associated to Sobolev vector fields in Wiener spaces: An approach à la DiPerna-Lions,, J. Funct. Anal., 256, 179 (2009) · Zbl 1156.60036 · doi:10.1016/j.jfa.2008.05.007
[4] L. Ambrosio, <em>Functions of Bounded Variation and Free Discontinuity Problems,</em>, Oxford mathematical monographs (2000) · Zbl 0957.49001
[5] L. Ambrosio, Gradient Flows in Metric Spaces and in the Space of Probability Measures., Lectures in Mathematics ETH Zürich. Birkhäuser Verlag (2008) · Zbl 1210.28005
[6] Z. Ammari, Propagation of chaos for many-boson systems in one dimension with a point pair-interaction,, Asymptot. Anal., 76, 123 (2012) · Zbl 1253.81067
[7] Z. Ammari, Wigner measures approach to the classical limit of the Nelson model: convergence of dynamics and ground state energy,, J. Stat. Phys., 157, 330 (2014) · Zbl 1302.82009 · doi:10.1007/s10955-014-1079-7
[8] Z. Ammari, Bohr’s correspondence principle for the renormalized Nelson model,, <a href= · Zbl 1394.35383
[9] Z. Ammari, Mean field limit for bosons and infinite dimensional phase-space analysis,, Ann. Henri Poincaré, 9, 1503 (2008) · Zbl 1171.81014 · doi:10.1007/s00023-008-0393-5
[10] Z. Ammari, Mean field limit for bosons and propagation of Wigner measures,, J. Math. Phys., 50 (2009) · Zbl 1214.81089 · doi:10.1063/1.3115046
[11] Z. Ammari, Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states,, J. Math. Pures Appl., 95, 585 (2011) · Zbl 1251.81062 · doi:10.1016/j.matpur.2010.12.004
[12] Z. Ammari, Mean field propagation of infinite dimensional Wigner measures with a singular two-body interaction potential,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 14, 155 (2015) · Zbl 1341.81037
[13] Z. Ammari, On the classical limit of self-interacting quantum field Hamiltonians with cutoffs,, Hokkaido Math. J., 43, 385 (2014) · Zbl 1304.81114 · doi:10.14492/hokmj/1416837571
[14] H. Bahouri, Equations de transport relatives à des champs de vecteurs non-lipschitziens et mécanique des fluides,, Arch. Rational Mech. Anal., 127, 159 (1994) · Zbl 0821.76012 · doi:10.1007/BF00377659
[15] C. Bardos, Weak coupling limit of the \(N\)-particle Schrödinger equation,, Methods Appl. Anal., 7, 275 (2000) · Zbl 1003.81027 · doi:10.4310/MAA.2000.v7.n2.a2
[16] P. Bernard, Young measures, superposition and transport,, Indiana Univ. Math. J., 57, 247 (2008) · Zbl 1239.49059 · doi:10.1512/iumj.2008.57.3163
[17] J. Bourgain, Periodic nonlinear Schrödinger equation and invariant measures,, Comm. Math. Phys., 166, 1 (1994) · Zbl 0822.35126
[18] N. Burq, Probabilistic well-posedness for the cubic wave equation,, J. Eur. Math. Soc., 16, 1 (2014) · Zbl 1295.35387 · doi:10.4171/JEMS/426
[19] E. Carlen, Exponential relaxation to equilibrium for a one-dimensional focusing non-linear Schrödinger equation with noise,, Comm. Math. Phys., 342, 303 (2016) · Zbl 1341.35148 · doi:10.1007/s00220-015-2511-9
[20] T. Cazenave, <em>Semilinear Schrödinger Equations</em>, volume 10 of Courant Lecture Notes in Mathematics,, New York University (2003) · Zbl 1055.35003 · doi:10.1090/cln/010
[21] T. Cazenave, <em>An Introduction to Semilinear Evolution Equations</em>,, Oxford Lecture Series in Mathematics and its Applications (1998) · Zbl 0926.35049
[22] T. Chen, Unconditional uniqueness for the cubic Gross-Pitaevskii hierarchy via quantum de Finetti,, Commun. Pure Appl. Math., 68, 1845 (2015) · Zbl 1326.35332 · doi:10.1002/cpa.21552
[23] J. Colliander, Low regularity global well-posedness for the Zakharov and Klein-Gordon-Schrödinger systems,, Trans. Amer. Math. Soc., 360, 4619 (2008) · Zbl 1158.35085 · doi:10.1090/S0002-9947-08-04295-5
[24] F. Colombini, Uniqueness of continuous solutions for BV vector fields,, Duke Math. J., 111, 357 (2002) · Zbl 1017.35029 · doi:10.1215/S0012-7094-01-11126-5
[25] G. Crippa, <em>The Flow Associated to Weakly Differentiable Vector Fields</em>,, volume 12 of Theses of Scuola Normale Superiore di Pisa. Edizioni della Normale (2009) · Zbl 1178.35134
[26] R. J. DiPerna, Measure-valued solutions to conservation laws,, Arch. Rational Mech. Anal., 88, 223 (1985) · Zbl 0616.35055 · doi:10.1007/BF00752112
[27] R. J. DiPerna, Ordinary differential equations, transport theory and Sobolev spaces,, Invent. Math., 98, 511 (1989) · Zbl 0696.34049 · doi:10.1007/BF01393835
[28] M. Donald, The classical field limit of \(P(\varphi )_2\) quantum field theory,, Comm. Math. Phys., 79, 153 (1981)
[29] L. Erdös, Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems,, Invent. Math. 167 (2007), 167, 515 (2007) · Zbl 1123.35066 · doi:10.1007/s00222-006-0022-1
[30] J. Fröhlich, Mean-field- and classical limit of many-body Schrödinger dynamics for bosons,, Comm. Math. Phys., 271, 681 (2007) · Zbl 1172.82011 · doi:10.1007/s00220-007-0207-5
[31] J. Ginibre, The classical field limit of scattering theory for nonrelativistic many-boson systems, I,, Comm. Math. Phys., 66, 37 (1979) · Zbl 0443.35067
[32] J. Ginibre, The global Cauchy problem for the nonlinear Klein-Gordon equation,, Math. Z., 189, 487 (1985) · Zbl 0549.35108 · doi:10.1007/BF01168155
[33] K. Hepp, The classical limit for quantum mechanical correlation functions,, Comm. Math. Phys., 35, 265 (1974) · doi:10.1007/BF01646348
[34] S. Klainerman, On the uniqueness of solutions to the Gross-Pitaevskii hierarchy,, Commun. Math. Phys., 279, 169 (2008) · Zbl 1147.37034 · doi:10.1007/s00220-008-0426-4
[35] A. Knowles, Mean-field dynamics: Singular potentials and rate of convergence,, Comm. Math. Phys., 298, 101 (2010) · Zbl 1213.81180 · doi:10.1007/s00220-010-1010-2
[36] A. V. Kolesnikov, On continuity equations in infinite dimensions with non-Gaussian reference measure,, J. Funct. Anal., 266, 4490 (2014) · Zbl 1317.60083 · doi:10.1016/j.jfa.2014.01.010
[37] J. Lebowitz, Statistical mechanics of the nonlinear Schrödinger equation,, J. Statist. Phys., 50, 657 (1988) · Zbl 0925.35142 · doi:10.1007/BF01026495
[38] Q. Liard, <em>Dérivation Des Équations de Schrödinger non Linéaires Par Une M\'ethode Des Caractéristiques en Dimension Infinie,</em>, PHD Thesis (Rennes) 2015. (2015)
[39] Q. Liard, On the mean-field approximation of many-boson dynamics,, J. Funct. Anal., 273, 1397 (2017) · Zbl 1367.81168 · doi:10.1016/j.jfa.2017.04.016
[40] Q. Liard, Mean field limit for bosons with compact kernels interactions by Wigner measures transportation,, Journal of Mathematical Physics, 55 (2014) · Zbl 1302.82075 · doi:10.1063/1.4895467
[41] M. Mandelkern, On the uniform continuity of Tietze extensions,, Arch. Math., 55, 387 (1990) · Zbl 0712.54009 · doi:10.1007/BF01198478
[42] S. Maniglia, Probabilistic representation and uniqueness results for measure-valued solutions of transport equations,, J. Math. Pures Appl., 87, 601 (2007) · Zbl 1123.60048 · doi:10.1016/j.matpur.2007.04.001
[43] H. P. McKean, Statistical mechanics of nonlinear wave equations,, in Trends and perspectives in applied mathematics, 100, 239 (1994) · Zbl 0811.35171 · doi:10.1007/978-1-4612-0859-4_8
[44] H. Pecher, Some new well-posedness results for the Klein-Gordon-Schrödinger system,, Differential Integral Equations, 25, 117 (2012) · Zbl 1249.35309
[45] F. Poupaud, Measure solutions to the linear multi-dimensional transport equation with non-smooth coefficients,, Comm. Partial Differential Equations, 22, 337 (1997) · Zbl 0882.35026 · doi:10.1080/03605309708821265
[46] L. Schwartz, <em>Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures</em>,, Oxford University Press (1973) · Zbl 0298.28001
[47] I. Segal, Construction of non-linear local quantum processes, I,, Ann. of Math., 92, 462 (1970) · Zbl 0213.40904 · doi:10.2307/1970628
[48] B. Simon, <em>The \(P(\phi )_2\) Euclidean (Quantum) Field Theory,</em>, Princeton University Press (1974) · Zbl 1175.81146
[49] H. Spohn, Kinetic equations from Hamiltonian dynamics: The Markovian approximations,, in Kinetic theory and gas dynamics, 183 (1988) · doi:10.1007/978-3-7091-2762-9_6
[50] C. Swartz, <em>Measure, Integration and Function Spaces</em>,, World Scientific Publishing Co. (1994) · Zbl 0814.28001 · doi:10.1142/2223
[51] J. Szczepański, On the basis of statistical mechanics. The Liouville equation for systems with an infinite countable number of degrees of freedom,, Phys. A, 157, 955 (1989) · Zbl 0678.58045 · doi:10.1016/0378-4371(89)90075-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.