×

An efficient algorithm for biomechanical problems based on a fully implicit nested Newton solver. (English) Zbl 07807016

Summary: Numerical simulations of the dynamics of soft biological tissues are highly non-trivial because tissues generally exhibit complex biological response to external and internal actions, including large deformations and remodeling. Combining the advantages of globally implicit approach (GIA) solvers with the general applicability of the semi-implicit General Plasticity Algorithm (GPA), introduced by some of us some years ago, we present a new, efficient plasticity algorithm, which we call Bio Mechanics Basis Plasticity Algorithm (BMBPA). This is fully implicit, based on a nested Newton solver, and naturally suited for massively parallel computations. The Bilby-Kröner-Lee (BKL) multiplicative decomposition of the deformation gradient tensor is employed to introduce the unknowns of our model. We distinguish between global and local unknowns, associated with local and global equations, which are connected by means of a resolution function. The BMBPA asks for very few conditions to be applied and thus can be easily employed to solve several types of biological and biomechanical problems. We demonstrate the efficacy of BMBPA by performing two numerical experiments of a monophasic model of fiber-reinforced tissues. In one case, we consider the shear-compression test of a cubic specimen of tissue, while, in the other case, we focus on the unconfined compression test of a cylinder. The BMBPA is capable of solving the deformation and the remodeling of anisotropic biological tissues by employing a computation time of hours, while the GPA, applied to the same problems as the BMBPA, needs a substantially longer amount of time. All computations were performed in parallel and, within all tests, the performance of the BMBPA displayed substantially higher than the one of the GPA. The results of our simulations permit to study the overall mechanical behavior of the considered tissue and enable further investigations in the field of tissue biomechanics.

MSC:

65M22 Numerical solution of discretized equations for initial value and initial-boundary value problems involving PDEs
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
74-10 Mathematical modeling or simulation for problems pertaining to mechanics of deformable solids
74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] J. C. Simo,Numerical analysis and simulation of plasticity, in: P. G. Ciarlet, J. L. Lions (eds.),Handb. Numer. Anal.6(1998), 179-181, Elsevier Science, Amsterdam.
[2] J. Alberty, C. Carstensen, D. Zarrabi,Adaptive numerical analysis in primal elastoplasticity with hardening., Comput. Methods Appl. Mech. Eng.171(1999), 175-204. · Zbl 0956.74049
[3] D. Ambrosi, M. Ben Amar, C. J. Cyron, A. De Simone, A. Goriely, J. D. Humphrey, E. Kuhl, Growth and remodelling of living tissues: perspectives, challenges and opportunities, Journal of The Royal Society Interface16(157) (2019), 20190233.
[4] D. Ambrosi, G. A. Ateshian, E. M. Arruda, and et al.,Perspectives on biological growth and remodeling, J. Mech. Phys. Solids59(4) (2011), 863-883. · Zbl 1270.74134
[5] D. Ambrosi, F. Guana,Stress-modulated growth, Math. Mech. Solids12(2007), 319-342. · Zbl 1149.74040
[6] D. Ambrosi, A. Guillou, and E. S. Di Martino,Stress-modulated remodelling of a nonhomogeneous body,1, 63-76.
[7] D. Ambrosi, L. Preziosi,On the closure of mass balance models for tumor growth, Mathematical Models and Methods in Applied Sciences12(05) (2002), 737-754. · Zbl 1016.92016
[8] L Amir, M Kern,A global method for coupling transport with chemistry in heterogeneous porous media., Comput. Geosci.14(3) (2010), 465-481. · Zbl 1425.76231
[9] F. Armero,Formulation and finite element implementation of a multiplicative model of coupled poro-plasticity at finite strains under fully saturated conditions, Comput. Methods Appl. Mech. Eng.171(3-4) (1999), 205-241. · Zbl 0968.74062
[10] H. Brezis,Functional analysis, sobolev spaces and partial differential equations, Springer, New York, 2011. · Zbl 1220.46002
[11] M. Carfagna, A. Grillo,The spherical design algorithm in the numerical simulation of biological tissues with statistical fibre-reinforcement, Comput. Vis. Sci.18(2017), 1-28.
[12] V. Ciancio, M. Dolfin, M. Francaviglia, S. Preston,Uniform materials and the multiplicative decomposition of the deformation gradient in finite elasto-plasticity, J. Non-Equilib. Thermodyn.33(3)(2008), 199-234. · Zbl 1158.74009
[13] S. C. Cowin,How is a tissue built?, Journal of Biomechanical Engineering122(2000), 553-569.
[14] S. C. Cowin,Tissue growth and remodeling, Annual Review of Biomedical Engineering6(1) (2004), 77-107.
[15] E. Crevacore, S. Di Stefano, A. Grillo,Coupling among deformation, fluid flow, structural reorganisation and fibre reorientation in fibre-reinforced, transversely isotropic biological tissues, Int. J. Non-Linear Mech.111(2019), 1-13.
[16] C. de Dieuleveult, J, Erhel,A global approach to reactive transport: application to the momas benchmark, Comput. Geosci.14(3) (2010), 451-464. · Zbl 1425.76294
[17] C. de Dieuleveult, J. Erhel, M. M. Kern,A global strategy for solving reactive transport equations, J. Comput. Phys.228(17) (2009), 6395-6410. · Zbl 1173.76040
[18] S. Di Stefano, E. Benvenuti, V. Coscia,On the role of friction and remodelling in cell-matrix interactions: A continuum mechanical model, Int. J. Non-Linear Mech.142(2022), 103966.
[19] S. Di Stefano, M. Carfagna, M. M. Knodel, K. Hashlamoun, S. Federico, A. Grillo,Anelastic reorganisation of fibre-reinforced biological tissues, Comput. Vis. Sci.20(3-6) (2019), 95-109. · Zbl 07704884
[20] S. Di Stefano, G. Florio, G. Napoli, N. M. Pugno, G. Puglisi,On the role of elasticity in focal adhesion stability within the passive regime, Int. J. Non-Linear Mech.146(2022), 104157.
[21] S. Di Stefano, A. Giammarini, C. Giverso, A. Grillo,An elasto-plastic biphasic model of the compression of multicellular aggregates: the influence of fluid on stress and deformation, Z. Angew. Math. Phys.73(2) (2022), 79. · Zbl 1486.92057
[22] S. Di Stefano, A. Ram´ırez-Torres, R. Penta, A. Grillo,Self-influenced growth through evolving material inhomogeneities, Int. J. Non-Linear Mech.106(2018), 174-187.
[23] M. Epstein,Mathematical characterization and identification of remodeling, growth, aging and morphogenesis, J. Mech. Phys. Solids84(2015), 72-84. · Zbl 1481.92017
[24] M. Epstein,The split between remodelling and aging, Int. J. Non-Linear Mech.44(6) (2009), 604-609.
[25] M. Epstein, G. A. Maugin,On the geometrical material structure of anelasticity, Acta Mech. 115(1-4) (1996), 119-131. · Zbl 0856.73008
[26] M. Epstein, G. A. Maugin,Thermomechanics of volumetric growth in uniform bodies, Int. J. Plast.16(7-8) (2000), 951-978. · Zbl 0979.74006
[27] R. A. Eve, B. D. Reddy,The variational formulation and solution of problems of finite-strain elastoplasticity based on the use of a dissipation function, Int. J. Numer. Methods Eng.37(10) (1994), 1673-1695. · Zbl 0805.73079
[28] S. Federico,Porous materials with statistically oriented reinforcing fibres, in: L. Dorfmann, R. W. Ogden, (eds.),Nonlinear Mechanics of Soft Fibrous Materials, Springer, CISM Courses Lect.559(2015), 49-120.
[29] S. Federico, T. C. Gasser,Non-linear elasticity of biological tissues with statistical fibre orientation, Journal of the Royal Society Interface7(2010), 955-966.
[30] S. Federico, A. Grillo,Elasticity and permeability of porous fibre-reinforced materials under large deformations, Mechanics of Materials44(2012), 58-71.
[31] S. Federico, A. Grillo,Linear elastic composites with statistically oriented spheroidal inclusions, in: S. A. Meguid, G. J. Weng (eds.),Micromechanics and Nanomechanics of Composite Solids, Springer International Publishing, 2017, 307-346.
[32] S. Federico, A. Grillo, G. La Rosa, G. Giaquinta, W. Herzog,A transversely isotropic, transversely homogeneous micro-structural-statistical model of articular cartilage, Journal of Biomechanics38(2005), 2008-2018.
[33] S. Federico, W. Herzog,On the anisotropy and inhomogeneity of permeability in articular cartilage, Biomechanics and Modeling in Mechanobiology7(2008), 367-378.
[34] S. Federico, W. Herzog,On the permeability of fibre-reinforced porous materials, Int. J. Solids Struct.45(2008), 2160-2172. · Zbl 1151.74016
[35] N. I. Fischer, T. Lewis, B. J. J. Embleton,Statistical Analysis of Spherical Data, Cambridge University Press, Cambridge, UK, 1987. · Zbl 0651.62045
[36] Y. C. Fung,Biomechanics. Motion, Flow, Stress, and Growth, Springer-Verlag, New York, USA, 1990. · Zbl 0743.92007
[37] Y. C. Fung,Stress, strain, growth, and remodeling of living organisms, in: J. Casey, M. J. Crochet (eds.),Theoretical, Experimental, and Numerical Contributions to the Mechanics of Fluids and Solids, Birkh¨auser, Basel, 1995, 469-482. · Zbl 0829.73055
[38] D. Garcia, P. K. Zysset, M. Charlebois, A. Curnier,A three-dimensional elastic plastic damage constitutive law for bone tissue, Biomech. Model. Mechanobiol.8(2) (2009), 149-165.
[39] L. Geris, A. A. C. Reed, J. Vander Sloten, A. H. R. W. Simpson, H. Van Oosterwyck,Occurrence and treatment of bone atrophic non-unions investigated by an integrative approach, PLoS Comput. Biol.6(2010), e1000915.
[40] L. Gerisa, A. Andreykiv, H. Van Oosterwyck, J. Vander Sloten, F. van Keulen, J. Duyck, I. Naert,Numerical simulation of tissue differentiation around loaded titanium implants in a bone chamber, Journal of Biomechanics37(2004), 763-769.
[41] C. Giverso, S. Di Stefano, A. Grillo, L. Preziosi,A three dimensional model of multicellular aggregate compression, Soft Matter15(40) (2019), 10005-10019.
[42] C. Giverso, L. Preziosi,Modelling the compression and reorganization of cell aggregates, Math. Med. Biol.29(2) (2012), 181-204. · Zbl 1328.92016
[43] C. Giverso, M. Scianna, A. Grillo,Growing avascular tumours as elasto-plastic bodies by the theory of evolving natural configurations, Mech. Res. Commun.68(2015), 31-39.
[44] C. Gr¨aser, R. Kornhuber,Multigrid methods for obstacle problems, J. Comput. Math.27 (2009), 1-44. · Zbl 1199.65401
[45] C. Gr¨aser, U. Sack, O. Sander,Truncated nonsmooth newton multigrid methods for convex minimization problems, in: M. Bercovier, M. J. Gander, R. Kornhuber, O. Widlund (eds.), Domain Decomposition Methods in Science and Engineering XVIII, Lect. Notes Comput. Sci. Eng.70, Springer, New York, 2009. · Zbl 1183.65076
[46] A. Grillo, M. Carfagna, S. Federico,An Allen-Cahn approach to the remodelling of fibrereinforced anisotropic materials, J. Eng. Math.109(1) (2018), 139-172. · Zbl 1408.74037
[47] A. Grillo, S. Di Stefano, A. Ram´ırez-Torres, M. Loverre,A study of growth and remodeling in isotropic tissues, based on the Anand-Aslan-Chester theory of strain-gradient plasticity, GAMM-Mitt.42(4) (2019), e201900015. · Zbl 1541.92017
[48] A. Grillo, S. Federico, G. Wittum,Growth, mass transfer, and remodeling in fiber-reinforced, multi-constituent materials, Int. J. Non-Linear Mech.47(2012), 388-401.
[49] A. Grillo, R. Prohl, G. Wittum,A poroplastic model of structural reorganisation in porous media of biomechanical interest, Contin. Mech. Thermodyn.28(2016), 579-601. · Zbl 1348.74097
[50] A. Grillo, G. Wittum, A. Tomic, S. Federico,Remodelling in statistically oriented fibrereinforced materials and biological tissues, Math. Mech. Solids20(9) (2015), 1107-1129. · Zbl 1329.74193
[51] A. Grillo, R. Prohl, G. Wittum,A generalised algorithm for anelastic processes in elastoplasticity and biomechanics, Math. Mech. Solids22(3) (2017), 502-527. · Zbl 1373.74105
[52] A. Guillou, R. W. Ogden,Growth in soft biological tissue and residual stress development, in: G. A. Holzapfel, R. W. Ogden (eds.),Mechanics of Biological Tissue, Springer-Verlag, 2006, 47-62.
[53] W. Han, B. D. Reddy,Plasticity - Mathematical Theory and Numerical Analysis, Springer, New York, 1999. · Zbl 0926.74001
[54] Apollo Hawk, HLRS Stuttgart, https://www.hlrs.de/solutions/systems/hpe-apollo-hawk.
[55] I. Heppner, M. Lampe, A. N¨agel, S. Reiter, M. Rupp, A. Vogel, G. Wittum,Software framework ug4: Parallel multigrid on the hermit supercomputer, in: W. E. Nagel, D. H. Kr¨oner, M. M. Resch (eds.),High Performance Computing in Science and Engineering ’12, Springer, Berlin, Heidelberg, 2012.
[56] M. H. Holmes, V. C. Mow,The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration., Journal of biomechanics23(1990), 1145-1156.
[57] S. H¨uber, B. Wohlmuth,A primal-dual active set strategy for non-linear multibody contact problems, Comput. Methods Appl. Mech. Eng.194(2005), 3147-3166. · Zbl 1093.74056
[58] T. J. R. Hughes,The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1987. · Zbl 0634.73056
[59] P. Knabner, L. Angermann,Numerical Methods for Elliptic and Parabolic Partial Differential Equations, Springer, Cham, 2021. · Zbl 1483.65003
[60] M. M. Knodel, S. Kr¨autle, P. Knabner,Global implicit solver for multiphase multicomponent flow in porous media with multiple gas components and general reactions, Comput. Geosci. 26(2022), 697-724. · Zbl 1489.86004
[61] M. M. Knodel, A. N¨agel, S. Reiter, M. Rupp, A. Vogel, P Targett-Adams, E. Herrmann, G. Wittum,Multigrid analysis of spatially resolved hepatitis c virus protein simulations, Comput. Vis. Sci.17(5) (2015), 235-253. · Zbl 1388.92004
[62] H. Kothari, R. Krause,A generalized multigrid method for solving contact problems in lagrange multiplier based unfitted finite element method, Comput. Methods Appl. Mech. Eng. 392(2022), 114630. · Zbl 1507.74246
[63] R. Krause, B. Wohlmuth,Monotone methods on nonmatching grids for nonlinear contact problems, SIAM J. Sci. Comput.25(2003), 324-347. · Zbl 1163.65334
[64] E. Kr¨oner,Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen, Arch. Ration. Mech. Anal.4(1) (1959), 273-334. · Zbl 0090.17601
[65] Y. Lanir,Constitutive equations for fibrous connective tissues, Journal of Biomechanics16 (1983), 1-12.
[66] T. Laursen,Computational Contact and Impact Mechanics, Springer, New York, 2003.
[67] T. Laursen, J. Simo,A continuum-based finite element formulation for the implicit solution of multibody, large deformation frictional contact problems, Int. J. Numer. Meth. Engrg.36 (1993), 3451-3485. · Zbl 0833.73057
[68] V. A. Lubarda, A. Hoger,On the mechanics of solids with a growing mass, International Journal of the Mechanics and Physics of Solids39(2002), 4627-4664. · Zbl 1045.74035
[69] J. Lubliner,Plasticity Theory, Dover Publications, Inc., Mineola, New York, 2008. · Zbl 1201.74002
[70] J. E. Marsden, T. J. R. Hughes,Mathematical Foundations of Elasticity, Dover Publications Inc., Mineola, New York, 1983. · Zbl 0545.73031
[71] G. A. Maugin, M. Epstein,Geometrical material structure of elastoplasticity, Int. J. Plasticity 14(1-3) (1998), 109-115. · Zbl 0911.73028
[72] M. Mi´cunovi´c,Thermomechanics of Viscoplasticity:Fundamentals and Applications, Springer, New York, 2009. · Zbl 1162.74001
[73] T. Olsson, A. Klarbring,Residual stresses in soft tissue as a consequence of growth and remodeling: application to an arterial geometry, Eur. J. Mech., A, Solids27(6) (2008), 959-974. · Zbl 1151.74387
[74] V. Peiffer, A. Gerisch, D. Vandepitte, H. Oosterwyck, L. Geris,A hybrid bioregulatory model of angiogenesis during bone fracture healing, Biomech. Model. Mechanobiol.10(2011), 383-395.
[75] A. Popp, M. Gee, W. Wall,Finite deformation contact based on 3d dual mortar and semi– smooth newton approach, in: G. Zavarise, P. Wriggers (eds.),Trends in Computational Contact Mechanics, Springer, New York, 2010, 57-77.
[76] P Prendergast, P. E. Galibarov, C. Lowery, A. B. Lennon,Computer simulating a clinical trial of a load-bearing implant: An example of an intramedullary prosthesis, J. Mech. Beh. Biomed. Mat.4(2011), 1880-1887.
[77] S. Preston, M. El ˙zanowski,Material uniformity and the concept of the stress space, in: B. Albers (ed.),Continuous Media with Microstructure, Springer Berlin Heidelberg, 2010, 91-101.
[78] L. Preziosi, D. Ambrosi, C. Verdier,An elasto-visco-plastic model of cell aggregates, J. Theor. Biol.262(1) (2010), 35-47. · Zbl 1403.92017
[79] M. Puso, T. Laursen,A mortar segment-to-segment contact method for large deformation solid mechanics, Comput. Methods Appl. Mech. Eng.193(2004), 601-629. · Zbl 1060.74636
[80] S. Reiter, D. Logashenko, A. Vogel, G Wittum,Mesh generation for thin layered domains and its application to parallel multigrid simulation of groundwater flow., Comput. Visual Sci. 23(2020), 2. · Zbl 07704906
[81] S. Reiter, A. Vogel, I. Heppner, M. Rupp, G. Wittum,A massively parallel geometric multigrid solver on hierarchically distributed grids, Comput. Visual Sci.16(2013), 151-164. · Zbl 1380.65463
[82] Sebastian Reiter, http://www.promesh3d.com/, 2014.
[83] E. K. Rodr´ıguez, A. Hoger, A. D. McCullogh,Stress-dependent finite growth in soft elastic tissues, Journal of Biomechanics27(1994), 455-467.
[84] S. Sadik, A. Yavari,On the origins of the idea of the multiplicative decomposition of the deformation gradient, Math. Mech. Solids22(4) (2017), 771-772. · Zbl 1371.74002
[85] J. C. Simo, T. J. R. Hughes,Computational Inelasticity, Springer, New York, 1998. FULLY IMPLICIT NESTED NEWTON BASED BIOMECHANICS SOLVER-BMBPA219
[86] L. A. Taber,Biomechanics of growth, remodeling, and morphogenesis, Appl. Mech. Rev.48(8) (1995), 487-545.
[87] A. Tomic, A. Grillo, S. Federico,Poroelastic materials reinforced by statistically oriented fibres-numerical implementation and application to articular cartilage, IMA J. Appl. Math. 79(2014), 1027-1059. · Zbl 1299.74171
[88] M. Tur, F. Fuenmayor, P. Wriggers,A mortar-based frictional contact formulation for large deformations using lagrange multipliers, Comput. Methods Appl. Mech. Eng.198(2009), 2860-2873. · Zbl 1229.74141
[89] C. Verdier, J. Etienne, A. Duperray, L. Preziosi,Review: Rheological properties of biological materials, Comptes Rendus Physique10(8) (2009), 790-811.
[90] A. Vogel, S. Reiter, M. Rupp, A. N¨agel, G. Wittum,Ug 4: A novel flexible software system for simulating pde based models on high performance computers, Comput. Vis. Sci.16(4) (2013), 165-179. · Zbl 1375.35003
[91] B. Wohlmuth,Variationally consistent discretization schemes and numerical algorithms for contact problems, Acta Numerica20(2011), 569-734. · Zbl 1432.74176
[92] J. Youett, O. Sander, R. Kornhuber,A globally convergent filter-trust-region method for large deformation contact problems, SIAM J. Sci. Comput.41(1) (2019), B114-B138. · Zbl 1414.65045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.