×

A pair of dual Hopf algebras on permutations. (English) Zbl 1484.16039

Summary: Hopf algebras are important objects in algebraic combinatorics since they have strong stability. In particular, its dual space is an important tool to study the properties of the original Hopf algebra. Based on the classical shuffle Hopf algebra structure, we have proved that the shuffle product and deconcatenation coproduct on the standard factorizations of permutations define a graded shuffle Hopf algebra on permutations. In this paper, we figure out a new product and a new coproduct on permutations to get the duality of this graded shuffle Hopf algebra.

MSC:

16T05 Hopf algebras and their applications
05A05 Permutations, words, matrices
08C20 Natural dualities for classes of algebras

References:

[1] H. Hopf, Über die topologie der Gruppen-Mannigfaltigkeiten und ihrer verallgemeinerungen, In: <i>Selecta Heinz Hopf</i>, Berlin: Springer, 1941. Available from: <a href=“https://doi.org/10.1007/978-3-662-25046-4_9” target=“_blank”>https://doi.org/10.1007/978-3-662-25046-4_9</a>.
[2] J, On the structure of Hopf algebras, Ann. Math., 81, 211-264 (1965) · Zbl 0163.28202 · doi:10.2307/1970615
[3] M. E. Sweedler, <i>Hopf Algebras</i>, New York: W. A. Benjamin, Inc., 1969. · Zbl 0203.31601
[4] V, The structure of Hopf algebras, J. Math. Sci., 71, 2289-2328 (1994) · Zbl 0835.16033 · doi:10.1007/BF02111020
[5] I, Bialgebras, Department of Mathematics University of Chicago Chicago ILL, 2, 247-251 (1975) · Zbl 1311.16029
[6] N. van den Hijligenberg, R. Martini, Differential Hopf algebra structures on the universal enveloping algebra of a Lie algebra, <i>J. Math. Phys.</i>, <b>37</b> (1996), 524. Available from: <a href=“https://doi.org/10.1063/1.531407” target=“_blank”>https://doi.org/10.1063/1.531407</a>. · Zbl 0872.17005
[7] C. Reutenauer, Free Lie algebras, In: <i>Handbook of Algebra</i>, Amsterdam: Elsevier, 2003. Available from: <a href=“https://doi.org/10.1016/S1570-7954(03)80075-X” target=“_blank”>https://doi.org/10.1016/S1570-7954(03)80075-X</a>.
[8] L, A combinatorial hopf algebra for nonlinear output feedback control systems, J. Algebra, 453, 609-643 (2016) · Zbl 1341.93020 · doi:10.1016/j.jalgebra.2016.01.004
[9] J, What is “geometric algebra”, and what has it been in historiography?\(^1\), AIMS Math., 2, 128-160 (2017) · Zbl 1431.01057 · doi:10.3934/Math.2017.1.128
[10] J. Cheng, Y. Wang, R. B. Zhang, Degenerate quantum general linear groups, 2018. Available from: <a href=“https://arXiv.org/abs/1805.07191” target=“_blank”>https://arXiv.org/abs/1805.07191</a>. · Zbl 1527.20082
[11] T, Generalized Clifford algebras as algebras in suitable symmetric linear Gr-categories, SIGMA, 12, 1-11 (2016) · Zbl 1338.15049
[12] J, Coalgebraic structure of genetic inheritance, Math. Biosci. Eng., 1, 243-266 (2004) · Zbl 1061.17027 · doi:10.3934/mbe.2004.1.243
[13] M, A duality theorem for Hopf algebras, Methods Ring Theory, 129, 517-522 (1984) · Zbl 0542.16007
[14] R, A duality theorem for Hopf module algebras, J. Algebra, 95, 153-172 (1985) · Zbl 0589.16010 · doi:10.1016/0021-8693(85)90099-7
[15] S, Coalgebras and bialgebras in combinatorics, Stud. Appl. Math., 61, 93-139 (1979) · Zbl 0471.05020 · doi:10.1002/sapm197961293
[16] M, Combinatorial Hopf algebras and generalized Dehn-Sommerville relations, Compos. Math., 142, 1-30 (2006) · Zbl 1092.05070 · doi:10.1112/S0010437X0500165X
[17] N, Algebraic structures on Grothendieck groups of a tower of algebras, J. Algebra, 321, 2068-2084 (2009) · Zbl 1185.16008 · doi:10.1016/j.jalgebra.2008.12.005
[18] N, Combinatorial Hopf algebras and towers of algebras-dimension, quantization and functoriality, Algebr. Represent. Theory, 15, 675-696 (2012) · Zbl 1281.16036 · doi:10.1007/s10468-010-9258-y
[19] H, Structure constants for \(K\)-theory of Grassmannians, revisited, J. Comb. Theory, Ser. A, 144, 306-325 (2016) · Zbl 1343.05165 · doi:10.1016/j.jcta.2016.06.016
[20] H, Rational convolution roots of isobaric polynomials, Rocky Mt. J. Math., 4, 1259-1275 (2017) · Zbl 1431.11028
[21] L. Cao, Z. Chen, X. Duan, H. Li, Permanents of doubly substochastic matrices, <i>Linear Multilinear Algebra</i>, <b>68</b> (2020), 594-605. Available from: <a href=“https://doi.org/10.1080/03081087.2018.1513448” target=“_blank”>https://doi.org/10.1080/03081087.2018.1513448</a>. · Zbl 1432.15034
[22] L, Partitions of the polytope of doubly substochastic matrices, Linear Algebra Appl., 563, 98-122 (2019) · Zbl 1405.15041 · doi:10.1016/j.laa.2018.10.024
[23] L, Diagonal sums of doubly substochastic matrices, Electron. J. Linear Algebra, 35, 42-52 (2017) · Zbl 1410.15061
[24] L. Cao, A minimal completion of (0, 1)-matrices without total support, <i>Linear Multilinear Algebra</i>, <b>67</b> (2018), 1522-1530. Available from: <a href=“https://doi.org/10.1080/03081087.2018.1460793” target=“_blank”>https://doi.org/10.1080/03081087.2018.1460793</a>. · Zbl 1419.15024
[25] R, Lie elements and an algebra associated with shuffles, Ann. Math., 68, 210-220 (1958) · Zbl 0083.25401 · doi:10.2307/1970243
[26] K, An algebraic dualization of fundamental groups, Bull. Am. Math. Soc., 75, 1020-1024 (1969) · Zbl 0182.57101 · doi:10.1090/S0002-9904-1969-12345-1
[27] M. Lothaire, <i>Combinatorics on Words</i>, UK: Cambridge University Press, 1997. · Zbl 0874.20040
[28] C, Duality between quasi-symmetric functions and the Solomon descent algebra, J. Algebra, 177, 967-982 (1995) · Zbl 0838.05100 · doi:10.1006/jabr.1995.1336
[29] A, Shuffles of permutations and the Kronecker product, Graphs Combinatorics, 1, 217-263 (1985) · Zbl 0588.05005 · doi:10.1007/BF02582950
[30] M, Structure of the Malvenuto-Reutenauer Hopf algebra of permutations, Adv. Math., 191, 225-275 (2005) · Zbl 1056.05139 · doi:10.1016/j.aim.2004.03.007
[31] N. Bergeron, C. Ceballos, V. Pilaud, Hopf dreams and diagonal harmonics, 2018. Available from: <a href=“https://arXiv.org/abs/1807.03044.” target=“_blank”>https://arXiv.org/abs/1807.03044.</a> · Zbl 1436.05119
[32] M, A Hopf algebra structure on permutations, J. Shangdong Norm. Univ. (Natual Sci.), 35, 417-422 (2020)
[33] C, Longest increasing and decreasing subsequences, Can. J. Math., 13, 179-191 (1961) · Zbl 0097.25202 · doi:10.4153/CJM-1961-015-3
[34] Y. Vargas, Hopf algebra of permutation pattern functions, <i>26th International Conference on Formal Power Series and Algebraic Combinatorics, Chicago, United States</i>, (2014), 839-850. Available from: <a href=“https://hal.inria.fr/hal-01207565” target=“_blank”>https://hal.inria.fr/hal-01207565</a>. · Zbl 1393.05308
[35] S. Fomin, Duality of graded graphs, <i>J. Algebraic Combinatorics</i>, <b>3</b> (1994), 357-404. Available from: <a href=“https://doi.org/10.1023/A:1022412010826” target=“_blank”>https://doi.org/10.1023/A:1022412010826</a>. · Zbl 0810.05005
[36] J, New invariants for permutations, orders and graphs, Adv. Appl. Math., 121, 102080 (2020) · Zbl 1462.16036 · doi:10.1016/j.aam.2020.102080
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.