×

Combined open-loop and funnel control for underactuated multibody systems. (English) Zbl 1432.93102

Summary: We consider tracking control for multibody systems which are modeled using generalized coordinates. Utilizing the two-degree-of-freedom approach to controller design, we combine a feedforward with a feedback controller. The feedforward control input is computed using the method of servo-constraints, which relies on an inverse model of the system. The feedback control input is generated by a dynamic output feedback which consists of the combination of a funnel controller with a funnel pre-compensator. This feedback controller is model free and hence inherently robust. The control design is restricted to multibody systems with relative degree two or three which have input-to-state stable internal dynamics. In the main result, we prove that the proposed controller is able to guarantee prescribed performance of the tracking error even in the presence of uncertainties and disturbances. We illustrate the application of the control design by a mass on car system (single-input, single-output) and a planar robotic manipulator (two-input, two-output). In the case of relative degree two, these systems contain an unknown friction term.

MSC:

93B52 Feedback control
93C85 Automated systems (robots, etc.) in control theory
70Q05 Control of mechanical systems

Software:

RODAS
Full Text: DOI

References:

[1] Altmann, R., Betsch, P., Yang, Y.: Index reduction by minimal extension for the inverse dynamics simulation of cranes. Multibody Syst. Dyn. 36(3), 295-321 (2016) · Zbl 1369.70046 · doi:10.1007/s11044-015-9471-x
[2] Altmann, R., Heiland, J.: Simulation of multibody systems with servo constraints through optimal control. Multibody Syst. Dyn. 40(1), 75-98 (2017) · Zbl 1386.70014 · doi:10.1007/s11044-016-9558-z
[3] Armstrong-Hélouvry, B., Dupont, P.E., Canudas-de Wit, C.: A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica 30(7), 1083-1138 (1994) · Zbl 0800.93424 · doi:10.1016/0005-1098(94)90209-7
[4] Berger, T.: On differential-algebraic control systems. Ph.D. Thesis, Institut für Mathematik, Technische Universität Ilmenau, Universitätsverlag Ilmenau, Germany (2014)
[5] Berger, T., Lê, H.H., Reis, T.: Funnel control for nonlinear systems with known strict relative degree. Automatica 87, 345-357 (2018). https://doi.org/10.1016/j.automatica.2017.10.017 · Zbl 1378.93059 · doi:10.1016/j.automatica.2017.10.017
[6] Berger, T., Reis, T.: Zero dynamics and funnel control for linear electrical circuits. J. Frankl. Inst. 351(11), 5099-5132 (2014) · Zbl 1307.93339 · doi:10.1016/j.jfranklin.2014.08.006
[7] Berger, T., Reis, T.: Funnel control via funnel pre-compensator for minimum phase systems with relative degree two. IEEE Trans. Autom. Control 63(7), 2264-2271 (2018). https://doi.org/10.1109/TAC.2017.2761020 · Zbl 1423.93138 · doi:10.1109/TAC.2017.2761020
[8] Berger, T., Reis, T.: The funnel pre-compensator. Int. J. Robust Nonlinear Control 28(16), 4747-4771 (2018) · Zbl 1402.93150 · doi:10.1002/rnc.4281
[9] Betsch, P.; Altmann, R.; Yang, Y.; Font-Llagunes, JM (ed.), Numerical integration of underactuated mechanical systems subjected to mixed holonomic and servo constraints, No. 42, 1-18 (2016), Cham · doi:10.1007/978-3-319-30614-8_1
[10] Betsch, P., Quasem, M., Uhlar, S.: Numerical integration of discrete mechanical systems with mixed holonomic and control constraints. J. Mech. Sci. Technol. 23(4), 1012-1018 (2009) · Zbl 1394.70003 · doi:10.1007/s12206-009-0331-6
[11] Blajer, W.: Index of differential-algebraic equations governing the dynamics of constrained mechanical systems. Appl. Math. Model. 16(2), 70-77 (1992) · Zbl 0757.93037 · doi:10.1016/0307-904X(92)90083-F
[12] Blajer, W., Kołodziejczyk, K.: A geometric approach to solving problems of control constraints: theory and a DAE framework. Multibody Syst. Dyn. 11(4), 343-364 (2004) · Zbl 1066.70018 · doi:10.1023/B:MUBO.0000040800.40045.51
[13] Blajer, W., Kołodziejczyk, K.: Improved DAE formulation for inverse dynamics simulation of cranes. Multibody Syst. Dyn. 25(2), 131-143 (2011) · doi:10.1007/s11044-010-9227-6
[14] Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. North-Holland, Amsterdam (1989) · Zbl 0699.65057
[15] Byrnes, C.I., Isidori, A.: A frequency domain philosophy for nonlinear systems, with application to stabilization and to adaptive control. In: Proceedings of 23rd IEEE Conference on Decision and Control, vol. 1, pp. 1569-1573 (1984)
[16] Campbell, S.L.: High-index differential algebraic equations. Mech. Struct. Mach. 23(2), 199-222 (1995) · doi:10.1080/08905459508905235
[17] Chen, D., Paden, B.: Stable inversion of nonlinear non-minimum phase systems. Int. J. Control 64(1), 81-97 (1996) · Zbl 0859.93007 · doi:10.1080/00207179608921618
[18] Devasia, S., Chen, D., Paden, B.: Nonlinear inversion-based output tracking. IEEE Trans. Autom. Control 41(7), 930-942 (1996) · Zbl 0859.93006 · doi:10.1109/9.508898
[19] Fumagalli, A., Masarati, P., Morandini, M., Mantegazza, P.: Control constraint realization for multibody systems. J. Comput. Nonlinear Dyn. 6(1), 011,002-011,002-8 (2010)
[20] Gear, C.W.: Differential-algebraic equation index transformations. SIAM J. Sci. Stat. Comput. 9, 39-47 (1988) · Zbl 0637.65072 · doi:10.1137/0909004
[21] Gross, D., Hauger, W., Schröder, J., Wall, W.: Technische Mechanik 1: Statik, 13th edn. Springer, Berlin (2016) · Zbl 1141.70301 · doi:10.1007/978-3-662-49472-1
[22] Hackl, C.M.: Non-identifier Based Adaptive Control in Mechatronics-Theory and Application. Lecture Notes in Control and Information Sciences, vol. 466. Springer, Cham (2017) · Zbl 1371.93002
[23] Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-algebraic Problems, Springer Series in Computational Mathematics, vol. 14, 2nd edn. Springer, Berlin (1996) · Zbl 0859.65067 · doi:10.1007/978-3-642-05221-7
[24] Ilchmann, A.; Hüper, K. (ed.); Trumpf, J. (ed.), Decentralized tracking of interconnected systems, 229-245 (2013), Scotts Valley
[25] Ilchmann, A., Mueller, M.: Time-varying linear systems: relative degree and normal form. IEEE Trans. Autom. Control 52(5), 840-851 (2007) · Zbl 1366.93087 · doi:10.1109/TAC.2007.895843
[26] Ilchmann, A., Ryan, E.P.: High-gain control without identification: a survey. GAMM Mitt. 31(1), 115-125 (2008) · Zbl 1196.93036 · doi:10.1002/gamm.200890000
[27] Ilchmann, A., Ryan, E.P., Sangwin, C.J.: Tracking with prescribed transient behaviour. ESAIM: Control, Optimisation and Calculus of Variations 7, 471-493 (2002) · Zbl 1044.93022
[28] Ilchmann, A., Trenn, S.: Input constrained funnel control with applications to chemical reactor models. Syst. Control Lett. 53(5), 361-375 (2004) · Zbl 1157.93426 · doi:10.1016/j.sysconle.2004.05.014
[29] Isidori, A.: Nonlinear Control Systems. Communications and Control Engineering Series, 3rd edn. Springer, Berlin (1995) · Zbl 0878.93001 · doi:10.1007/978-1-84628-615-5
[30] Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations. Analysis and Numerical Solution. EMS Publishing House, Zürich (2006). https://doi.org/10.4171/017 · Zbl 1095.34004 · doi:10.4171/017
[31] Langhaar, H.: Dimensional Analysis and Theory of Models. Wiley, New York (1951) · Zbl 0045.26205
[32] Leine, R.I., Nijmeijer, H.: Dynamics and Bifurcations of Non-smooth Mechanical Systems. Lecture Notes in Applied and Computational Mechanics, vol. 18. Springer, Berlin (2004) · Zbl 1068.70003 · doi:10.1007/978-3-540-44398-8
[33] Otto, S., Seifried, R.: Analysis of servo-constraints solution approaches for underactuated multibody systems. In: Proceedings of IMSD Lisbon 2018, Submitted to Proceedings IMSD 2018 (2017)
[34] Otto, S., Seifried, R.: Open-loop control of underactuated mechanical systems using servo-constraints: analysis and some examples. Technical Report, Institute of Mechanical and Ocean Engineering, Hamburg University of Technology (2017). (To appear in DAE Forum) · Zbl 1473.70065
[35] Otto, S., Seifried, R.: Real-time trajectory control of an overhead crane using servo-constraints. Multibody Syst. Dyn. 42(1), 1-17 (2018). https://doi.org/10.1007/s11044-017-9569-4 · Zbl 1418.70012 · doi:10.1007/s11044-017-9569-4
[36] Pomprapa, A., Weyer, S., Leonhardt, S., Walter, M., Misgeld, B.: Periodic funnel-based control for peak inspiratory pressure. In: Proceedings of IEEE 54th Annual Conference on Decision and Control, Osaka, Japan, pp. 5617-5622 (2015)
[37] Schiehlen, W., Eberhard, P.: Applied Dynamics. Springer, Cham (2014) · Zbl 1306.70001
[38] Seifried, R.: Integrated mechanical and control design of underactuated multibody systems. Nonlinear Dyn. 67(2), 1539-1557 (2012) · doi:10.1007/s11071-011-0087-2
[39] Seifried, R.: Two approaches for feedforward control and optimal design of underactuated multibody systems. Multibody Syst. Dyn. 27, 75-93 (2012) · Zbl 1344.93055 · doi:10.1007/s11044-011-9261-z
[40] Seifried, R., Blajer, W.: Analysis of servo-constraint problems for underactuated multibody systems. Mech. Sci. 4, 113-129 (2013) · doi:10.5194/ms-4-113-2013
[41] Senfelds, A., Paugurs, A.: Electrical drive DC link power flow control with adaptive approach. In: Proceedings of 55th International Scientific Conference on Power and Electrical Engineering of Riga Technical University, Riga, Latvia, pp. 30-33 (2014)
[42] Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control: Analysis and Design, 2nd edn. Wiley, Chichester (2005) · Zbl 0883.93001
[43] Sontag, E.D.: Smooth stabilization implies coprime factorization. IEEE Trans. Autom. Control 34(4), 435-443 (1989) · Zbl 0682.93045 · doi:10.1109/9.28018
[44] Sontag, E.D.: On the input-to-state stability property. Eur. J. Control 1, 24-36 (1995) · Zbl 1177.93003 · doi:10.1016/S0947-3580(95)70005-X
[45] Walter, W.: Ordinary Differential Equations. Springer, New York (1998) · Zbl 0991.34001 · doi:10.1007/978-1-4612-0601-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.