×

Numerical modelling of a spheroid living cell membrane under hydrostatic pressure. (English) Zbl 1456.92049

Summary: This paper contains the strain gradient theory to capture size effects in a spheroid living cell membrane. One of the common mechanisms to apply mechanotransduction to a living cell is hydrostatic pressure. So, in this problem the outer surface cell membrane is exposed to hydrostatic pressure and the inner surface is in contact with the cytoplasm. In the last twenty years, non-thermal techniques, including high hydrostatic pressure, have been used in the food industry as an effective parameter to inactivate microorganisms. The equilibrium equation and corresponding boundary conditions of a spheroid living cell membrane are obtained using minimum potential energy. In the following, the exact solution of Navier equation is presented. In order to present numerical results yeast cell properties are used. The material properties of the yeast cell have been taken from literature. Results of this paper have been validated with experimental data. At the end, a numerical example is performed to investigate the effect of some important parameters on the stress analysis of the living cell.

MSC:

92C37 Cell biology
92C10 Biomechanics
Full Text: DOI

References:

[1] Leucht, P., FAK-mediated mechanotransduction in skeletal regeneration, PLoS One, 2, e390, (2007) · doi:10.1371/journal.pone.0000390
[2] Wong, V. W., Pushing back: wound mechanotransduction in repair and regeneration, J. Investigative Dermatol., 131, 2186-2196, (2011) · doi:10.1038/jid.2011.212
[3] Poss, K. D.; Wilson, L. G.; Keating, M. T., Heart regeneration in zebrafish, Science, 298, 2188-2190, (2002) · doi:10.1126/science.1077857
[4] Dunn, S. L.; Olmedo, M. L., Mechanotransduction: relevance to physical therapist practice-understanding our ability to affect genetic expression through mechanical forces, Phys. Ther., 96, 712, (2016) · doi:10.2522/ptj.20150073
[5] Nowell, C. S., Chronic inflammation imposes aberrant cell fate in regenerating epithelia through mechanotransduction, Nat. Cell Biol., 18, 168-180, (2016) · doi:10.1038/ncb3290
[6] Suswillo, R. F., Strain uses gap junctions to reverse stimulation of osteoblast proliferation by osteocytes, Cell Biochem. Funct., 35, 56-65, (2017) · doi:10.1002/cbf.3245
[7] Mascharak, S., YAP-dependent mechanotransduction is required for proliferation and migration on native-like substrate topography, Biomaterials, 115, 155-166, (2017) · doi:10.1016/j.biomaterials.2016.11.019
[8] Donahue, D. A., SUN2 silencing impairs CD4 T cell proliferation and alters sensitivity to HIV-1 infection independently of cyclophilin A, J. Virol., 02303-16, (2017) · doi:10.1128/JVI.02303-16
[9] Paul, N. E., The effect of mechanical stress on the proliferation, adipogenic differentiation and gene expression of human adipose-derived stem cells, J. Tissue Eng. Regen. Med., 12, 276-284, (2017) · doi:10.1002/term.2411
[10] Tabatabaei, F., Effects of equiaxial strain on the differentiation of dental pulp stem cells without using biochemical reagents, Mol. Cell Biomech., 11, 209-220, (2014) · doi:10.3970/mcb.2014.011.209
[11] Haghighipour, N., Differential effects of cyclic uniaxial stretch on human mesenchymal stem cell into skeletal muscle cell, Cell Biol. Int., 36, 669-675, (2012) · doi:10.1042/CBI20110400
[12] Norizadeh-Abbariki, T., Superparamagnetic nanoparticles direct differentiation of embryonic stem cells into skeletal muscle cells, J. Biomater. Tissue Eng., 4, 579-585, (2014) · doi:10.1166/jbt.2014.1205
[13] Pan, H., YAP-mediated mechanotransduction regulates osteogenic and adipogenic differentiation of BMSCs on hierarchical structure, Colloids Surf. B, 152, 344-353, (2017) · doi:10.1016/j.colsurfb.2017.01.039
[14] Deshpande, R. S.; Spector, A. A., Modeling stem cell myogenic differentiation, Sci. Rep., 7, 40639, (2017) · doi:10.1038/srep40639
[15] Safshekan, F., Effects of short-term cyclic hydrostatic pressure on initiating and enhancing the expression of chondrogenic genes in human adipose-derived mesenchymal stem cells, J. Mech. Med. Biol., 14, 1450054, (2014) · doi:10.1142/S0219519414500547
[16] Szeto, G. L., Microfluidic squeezing for intracellular antigen loading in polyclonal B-cells as cellular vaccines, Sci. Rep., 5, 10276, (2015) · doi:10.1038/srep10276
[17] Sharei, A., A vector-free microfluidic platform for intracellular delivery, Proc. Natl Acad. Sci., 110, 2082-2087, (2013) · doi:10.1073/pnas.1218705110
[18] Lee, J., Nonendocytic delivery of functional engineered nanoparticles into the cytoplasm of live cells using a novel, high-throughput microfluidic device, Nano Lett., 12, 6322-6327, (2012) · doi:10.1021/nl303421h
[19] Sharei, A., Cell squeezing as a robust, microfluidic intracellular delivery platform, J. Vis. Exp., 81, (2013) · doi:10.3791/50980
[20] Uchugonova, A., Optical reprogramming of human cells in an ultrashort femtosecond laser microfluidic transfection platform, J. Biophoton., 9, 942-947, (2015) · doi:10.1002/jbio.201500240
[21] Buhlmann, C.; Valer, M.; Mueller, O., Monitoring siRNA transfection efficiency and gene silencing effect with a microfluidic chip device, Tissue Antigens, 64, 432, (2004)
[22] Perrier-Cornet, J-M; Maréchal, P-A; Gervais, P., A new design intended to relate high pressure treatment to yeast cell mass transfer, J. Biotechnol., 41, 49-58, (1995) · doi:10.1016/0168-1656(95)00052-R
[23] Smith, A.; Moxham, K.; Middelberg, A., Wall material properties of yeast cells. Part II. Analysis, Chem. Eng. Sci., 55, 2043-2053, (2000) · doi:10.1016/S0009-2509(99)00501-1
[24] Hartmann, C.; Mathmann, K.; Delgado, A., Mechanical stresses in cellular structures under high hydrostatic pressure, Innovative Food Sci. Emerging Technol., 7, 1-12, (2006) · doi:10.1016/j.ifset.2005.06.005
[25] Hartmann, C.; Delgado, A., Numerical simulation of the mechanics of a yeast cell under high hydrostatic pressure, J. Biomech., 37, 977-987, (2004) · doi:10.1016/j.jbiomech.2003.11.028
[26] Milner, J. S., Finite-element modeling of viscoelastic cells during high-frequency cyclic strain, J. Funct. Biomater., 3, 209-224, (2012) · doi:10.3390/jfb3010209
[27] Miyanishi, K., Effects of hydrostatic pressure and transforming growth factor-{\it β}3 on adult human mesenchymal stem cell chondrogenesis {\it in vitro}, Tissue Eng., 12, 1419-1428, (2006) · doi:10.1089/ten.2006.12.1419
[28] Price, J. C F. A., The Development and Validation of a Hydrostatic Pressure Bioreactor for Applications in Bone Tissue Engineering, (2017), Newcastle Under Lyme: Keele University, Newcastle Under Lyme
[29] Chen, J., Improvement of {\it in vitro} three-dimensional cartilage regeneration by a novel hydrostatic pressure bioreactor, Stem Cells Transl. Med., 6, sctm.2016-0118, (2016) · doi:10.5966/sctm.2016-0118
[30] Schroeder, C., A closed loop perfusion bioreactor for dynamic hydrostatic pressure loading and cartilage tissue engineering, J. Mech. Med. Biol., 16, 1650025, (2016) · doi:10.1142/S0219519416500251
[31] Salehi-Nik, N., Engineering parameters in bioreactor’s design: a critical aspect in tissue engineering, BioMed Res. Int., 2013, (2013) · doi:10.1155/2013/762132
[32] Haghighipour, N., Effects of cyclic stretch waveform on endothelial cell morphology using fractal analysis, Artif. Organs, 34, 481-490, (2010) · doi:10.1111/j.1525-1594.2010.01003.x
[33] Riehl, B. D., Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs, Tissue Eng. B, 18, 288-300, (2012) · doi:10.1089/ten.teb.2011.0465
[34] Syedain, Z. H.; Tranquillo, R. T., Controlled cyclic stretch bioreactor for tissue-engineered heart valves, Biomaterials, 30, 4078-4084, (2009) · doi:10.1016/j.biomaterials.2009.04.027
[35] Zhao, F.; Chella, R.; Ma, T., Effects of shear stress on 3‐D human mesenchymal stem cell construct development in a perfusion bioreactor system: experiments and hydrodynamic modeling, Biotechnol. Bioeng., 96, 584-595, (2007) · doi:10.1002/bit.21184
[36] Yeatts, A. B.; Fisher, J. P., Bone tissue engineering bioreactors: dynamic culture and the influence of shear stress, Bone, 48, 171-181, (2011) · doi:10.1016/j.bone.2010.09.138
[37] McCoy, R. J.; O’Brien, F. J., Influence of shear stress in perfusion bioreactor cultures for the development of three-dimensional bone tissue constructs: a review, Tissue Eng. B, 16, 587-601, (2010) · doi:10.1089/ten.teb.2010.0370
[38] Anisi, F., Applying shear stress to endothelial cells in a new perfusion chamber: hydrodynamic analysis, J. Artif. Organs, 17, 329-336, (2014) · doi:10.1007/s10047-014-0790-0
[39] Hodge, W., Contact pressures in the human hip joint measured {\it in vivo}, Proc. Natl Acad. Sci., 83, 2879-2883, (1986) · doi:10.1073/pnas.83.9.2879
[40] Bauer, B., Optical {\it in situ} analysis of starch granules under high pressure with a high pressure cell, Innovative Food Sci. Emerg. Technol., 5, 293-298, (2004) · doi:10.1016/j.ifset.2004.04.002
[41] Ludwig, H.; Butz, P.; Weber-Kühn, H., Bakterien unter druck, Dtsch. Apotheker Ztg., 130, 2774-2776, (1990)
[42] Daneshmehr, A.; Rajabpoor, A.; Hadi, A., Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories, Int. J. Eng. Sci., 95, 23-35, (2015) · Zbl 1423.74123 · doi:10.1016/j.ijengsci.2015.05.011
[43] Adeli, M. M., Torsional vibration of nano-cone based on nonlocal strain gradient elasticity theory, Eur. Phys. J. Plus, 132, 393, (2017) · doi:10.1140/epjp/i2017-11688-0
[44] Hosseini, M., Size-dependent stress analysis of single-wall carbon nanotube based on strain gradient theory, Int. J. Appl. Mech., 09, 1750087, (2017) · doi:10.1142/S1758825117500879
[45] Hosseini, M., Stress analysis of rotating nano-disks of variable thickness made of functionally graded materials, Int. J. Eng. Sci., 109, 29-53, (2016) · Zbl 1423.74019 · doi:10.1016/j.ijengsci.2016.09.002
[46] Nejad, M. Z.; Hadi, A.; Rastgoo, A., Buckling analysis of arbitrary two-directional functionally graded Euler-Bernoulli nano-beams based on nonlocal elasticity theory, Int. J. Eng. Sci., 103, 1-10, (2016) · Zbl 1423.74349 · doi:10.1016/j.ijengsci.2016.03.001
[47] Shishesaz, M., Analysis of functionally graded nanodisks under thermoelastic loading based on the strain gradient theory, Acta Mech., 228, 1-28, (2017) · Zbl 1380.74096 · doi:10.1007/s00707-017-1939-8
[48] Nejad, M. Z.; Hadi, A., Non-local analysis of free vibration of bi-directional functionally graded Euler-Bernoulli nano-beams, Int. J. Eng. Sci., 105, 1-11, (2016) · Zbl 1423.74403 · doi:10.1016/j.ijengsci.2016.04.011
[49] Nejad, M. Z.; Hadi, A., Eringen’s non-local elasticity theory for bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams, Int. J. Eng. Sci., 106, 1-9, (2016) · Zbl 1423.74505 · doi:10.1016/j.ijengsci.2016.05.005
[50] Toupin, R. A., Elastic materials with couple-stresses, Arch. Ration. Mech. Anal., 11, 385-414, (1962) · Zbl 0112.16805 · doi:10.1007/BF00253945
[51] Mindlin, R.; Eshel, N., On first strain-gradient theories in linear elasticity, Int. J. Solids Struct., 4, 109-124, (1968) · Zbl 0166.20601 · doi:10.1016/0020-7683(68)90036-X
[52] Eringen, A. C., Theory of micromorphic materials with memory, Int. J. Eng. Sci., 10, 623-641, (1972) · Zbl 0241.73116 · doi:10.1016/0020-7225(72)90089-4
[53] Eringen, A. C., Nonlocal polar elastic continua, Int. J. Eng. Sci., 10, 1-16, (1972) · Zbl 0229.73006 · doi:10.1016/0020-7225(72)90070-5
[54] Eringen, A. C., On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., 54, 4703-4710, (1983) · doi:10.1063/1.332803
[55] Eringen, A. C., Nonlocal Continuum Field Theories, (2002), Berlin: Springer, Berlin · Zbl 1023.74003
[56] Aifantis, E. C., Strain gradient interpretation of size effects, Int. J. Fract., 95, 299-314, (1999) · doi:10.1023/A:1018625006804
[57] Yang, F., Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct., 39, 2731-2743, (2002) · Zbl 1037.74006 · doi:10.1016/S0020-7683(02)00152-X
[58] Lam, D. C C., Experiments and theory in strain gradient elasticity, J. Mech. Phys. Solids, 51, 1477-1508, (2003) · Zbl 1077.74517 · doi:10.1016/S0022-5096(03)00053-X
[59] Danesh, V.; Asghari, M., Analysis of micro-rotating disks based on the strain gradient elasticity, Acta Mech., 225, 1955-1965, (2014) · Zbl 1401.74227 · doi:10.1007/s00707-013-1031-y
[60] Akgöz, B.; Civalek, Ö, Application of strain gradient elasticity theory for buckling analysis of protein microtubules, Curr. Appl. Phys., 11, 1133-1138, (2011) · doi:10.1016/j.cap.2011.02.006
[61] Civalek, Ö; Demir, Ç; Akgöz, B., Free vibration and bending analyses of cantilever microtubules based on nonlocal continuum model, Math. Comput. Appl., 15, 289-298, (2010) · Zbl 1202.35321 · doi:10.3390/mca15020289
[62] Farajpour, A.; Rastgoo, A., Influence of carbon nanotubes on the buckling of microtubule bundles in viscoelastic cytoplasm using nonlocal strain gradient theory, Results Phys., 7, 1367-1375, (2017) · doi:10.1016/j.rinp.2017.03.038
[63] Sahmani, S.; Aghdam, M., Size-dependent axial instability of microtubules surrounded by cytoplasm of a living cell based on nonlocal strain gradient elasticity theory, J. Theor. Biol., 422, 59-71, (2017) · Zbl 1370.92024 · doi:10.1016/j.jtbi.2017.04.012
[64] Mokhtari, F.; Tadi, B. Y., Free vibration analysis of microtubules as orthotropic elastic shells using stress and strain gradient elasticity theory, J. Solid Mech., 8, 511-529, (2016)
[65] Zeverdejani, M. K.; Beni, Y. T., The nano scale vibration of protein microtubules based on modified strain gradient theory, Curr. Appl. Phys., 13, 1566-1576, (2013) · doi:10.1016/j.cap.2013.05.019
[66] Stenson, J. D., Investigating the Mechanical Properties of Yeast Cells, (2009), Birmingham: The University of Birmingham, Birmingham
[67] Mindlin, R. D., Second gradient of strain and surface-tension in linear elasticity, Int. J. Solids Struct., 1, 417-438, (1965) · doi:10.1016/0020-7683(65)90006-5
[68] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, vol 55, (1964), New York: Dover\Courier Corporation, New York · Zbl 0171.38503
[69] Hedén, C-G, Effects of hydrostatic pressure on microbial systems, Bacteriol. Rev., 28, 14, (1964)
[70] Rutberg, L., On the effects of high hydrostatic pressure on bacteria and bacteriophage. 2. Inactivation of bacteriophages, Acta Pathol. Microbiol. Scand., 61, 91, (1964) · doi:10.1111/apm.1964.61.1.91
[71] Landau, J. V., Induction, transcription and translation in Escherichia coli: a hydrostatic pressure study, Biochim. Biophys. Acta, 149, 506-512, (1967) · doi:10.1016/0005-2787(67)90178-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.