×

Imperfection sensitivity of the size-dependent nonlinear instability of axially loaded FGM nanopanels in thermal environments. (English) Zbl 1380.74095

Summary: The nonlinear buckling of thin shell-type structures is sensitive to the initial geometric imperfection. In this study, the imperfection sensitivity of the nonlinear instability of cylindrical nanopanels made of functionally graded material (FGM) is addressed including surface elasticity, aiming to present a background for axial postbuckling behavior of imperfect FGM nanopanels. The material properties are supposed to be graded across the panel thickness in accordance with a simple power law function of the volume fractions of the silicon and aluminum constituents with considering the physical neutral plane position. The non-classical governing differential equations are constructed and then they are deduced to boundary layer-type ones. Afterward, a perturbation-based solution methodology is employed to extract explicit expressions for the size-dependent postbuckling equilibrium paths of FGM nanopanels with and without initial geometric imperfection and corresponding to various panel thicknesses, geometrical parameters, temperature changes and material property gradient indexes. It is displayed that through reduction of the surface elasticity effects for thicker FGM nanopanels, the influence of the initial geometric imperfection on the minimum load of the postbuckling regime increases. This pattern is more significant for FGM nanopanels with a lower value of the material gradient index.

MSC:

74M25 Micromechanics of solids
74G60 Bifurcation and buckling
74K25 Shells
74F05 Thermal effects in solid mechanics
Full Text: DOI

References:

[1] Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415-448 (1962) · Zbl 0112.38906 · doi:10.1007/BF00253946
[2] Toupin, R.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 485-414 (1962) · Zbl 0112.16805 · doi:10.1007/BF00253945
[3] Eringen, A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10, 425-435 (1972) · Zbl 0241.73005 · doi:10.1016/0020-7225(72)90050-X
[4] Yang, F., Chong, A., Lam, D., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731-2743 (2002) · Zbl 1037.74006 · doi:10.1016/S0020-7683(02)00152-X
[5] Lam, D., Yang, F., Chong, A., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477-1508 (2003) · Zbl 1077.74517 · doi:10.1016/S0022-5096(03)00053-X
[6] Shen, H.-S., Zhang, C.L.: Torsional buckling and postbuckling of double-walled carbon nanotubes by nonlocal shear deformable shell model. Compos. Struct. 92, 1073-1084 (2010) · doi:10.1016/j.compstruct.2009.10.002
[7] Wang, B., Zhao, J., Zhou, Sh: A micro scale Timoshenko beam model based on strain gradient elasticity theory. Eur. J. Mech. A. Solids 29, 591-599 (2010) · Zbl 1480.74194 · doi:10.1016/j.euromechsol.2009.12.005
[8] Ansari, R., Sahmani, S., Arash, B.: Nonlocal plate model for free vibrations of single-layered graphene sheets. Phys. Lett. A 375, 53-62 (2010) · doi:10.1016/j.physleta.2010.10.028
[9] Ansari, R., Sahmani, S.: Prediction of biaxial buckling behavior of single-layered graphene sheets based on nonlocal plate models and molecular dynamics simulations. Appl. Math. Model. 37, 7338-7351 (2013) · Zbl 1438.74063 · doi:10.1016/j.apm.2013.03.004
[10] Sahmani, S., Bahrami, M.: Nonlocal plate model for dynamic pull-in instability analysis of circular higher-order shear deformable nanoplates including surface stress effect. J. Mech. Sci. Technol. 29, 1151-1161 (2015) · doi:10.1007/s12206-015-0227-6
[11] Wang, Y.-G., Lin, W.-H., Liu, N.: Nonlinear bending and post-buckling of extensible microscale beams based on modified couple stress theory. Appl. Math. Model. 39, 117-127 (2015) · Zbl 1428.74130 · doi:10.1016/j.apm.2014.05.007
[12] Daneshmehr, A., Rajabpoor, A., Hadi, A.: Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories. Int. J. Eng. Sci. 95, 23-35 (2015) · Zbl 1423.74123 · doi:10.1016/j.ijengsci.2015.05.011
[13] Sahmani, S., Aghdam, M.M.: Size-dependent axial instability of microtubules surrounded by cytoplasm of a living cell based on nonlocal strain gradient elasticity theory. J. Theor. Biol. 422, 59-71 (2017) · Zbl 1370.92024 · doi:10.1016/j.jtbi.2017.04.012
[14] Sahmani, S., Fattahi, A.M.: Calibration of developed nonlocal anisotropic shear deformable plate model for uniaxial instability of 3D metallic carbon nanosheets using MD simulations. Comput. Methods Appl. Mech. Eng. 322, 187-207 (2017) · Zbl 1439.74172 · doi:10.1016/j.cma.2017.04.015
[15] Sahmani, S., Aghdam, M.M.: Size dependency in axial postbuckling behavior of hybrid FGM exponential shear deformable nanoshells based on the nonlocal elasticity theory. Compos. Struct. 166, 104-113 (2017) · doi:10.1016/j.compstruct.2017.01.051
[16] Tao, C., Fu, Y.: Thermal buckling and postbuckling analysis of size-dependent composite laminated microbeams based on a new modified couple stress theory. Acta Mech. 228, 1711-1724 (2017) · Zbl 1369.74040 · doi:10.1007/s00707-016-1770-7
[17] Sahmani, S., Aghdam, M.M.: Nonlinear instability of hydrostatic pressurized hybrid FGM exponential shear deformable nanoshells based on nonlocal continuum elasticity. Compos. B Eng. 114, 404-417 (2017) · doi:10.1016/j.compositesb.2017.01.038
[18] Sahmani, S., Fattahi, A.M.: Nonlocal size dependency in nonlinear instability of axially loaded exponential shear deformable FG-CNT reinforced nanoshells under heat conduction. Eur. Phys. J. Plus 132, 231 (2017) · doi:10.1140/epjp/i2017-11497-5
[19] Ebrahimi, F., Barati, M.R.: Vibration analysis of viscoelastic inhomogeneous nanobeams resting on a viscoelastic foundation based on nonlocal strain gradient theory incorporating surface and thermal effects. Acta Mech. 228, 1197-1210 (2017) · Zbl 1383.74033 · doi:10.1007/s00707-016-1755-6
[20] Zhang, H., Wang, C.M., Challamel, N.: Small length scale coefficient for Eringen’s and lattice-based continualized nonlocal circular arches in buckling and vibration. Compos. Struct. 165, 148-159 (2017) · doi:10.1016/j.compstruct.2017.01.020
[21] Sahmani, S., Fattahi, A.M.: Development an efficient calibrated nonlocal plate model for nonlinear axial instability of zirconia nanosheets using molecular dynamics simulation. J. Mol. Graph. Model. 75, 20-31 (2017) · doi:10.1016/j.jmgm.2017.04.018
[22] Streitz, F.H., Cammarata, R.C., Sieradzki, K.: Surface stress effects on elastic properties, I. Thin metal films. Phys. Rev. B 49, 10699-10706 (1994) · doi:10.1103/PhysRevB.49.10699
[23] Dingreville, R., Qu, J., Cherkaoui, M.: Surface free energy and its effects on the elastic behavior of nano-sized particles, wires and films. J. Mech. Phys. Solids 53, 1827-1954 (2005) · Zbl 1120.74683 · doi:10.1016/j.jmps.2005.02.012
[24] Gibbs, J.W.: The Scientific Papers of J. Willard Gibbs, vol. 1. Longmans-Green, New York (1906) · JFM 37.0035.06
[25] Fischer, F.D., Waitz, T., Vollath, D., Simha, N.K.: On the role of surface energy and surface stress in phase-transforming nanoparticles. Prog. Mater. Sci. 53, 481-527 (2008) · doi:10.1016/j.pmatsci.2007.09.001
[26] Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surface. Arch. Ration. Mech. Anal. 57, 291-323 (1975) · Zbl 0326.73001 · doi:10.1007/BF00261375
[27] Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431-440 (1978) · Zbl 0377.73001 · doi:10.1016/0020-7683(78)90008-2
[28] Wang, G.F., Feng, X.Q.: Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Appl. Phys. Lett. 90, 231904 (2007) · doi:10.1063/1.2746950
[29] Luo, J., Xiao, Z.M.: Analysis of a screw dislocation interacting with an elliptical nano inhomogeneity. Int. J. Eng. Sci. 47, 883-893 (2009) · doi:10.1016/j.ijengsci.2009.05.007
[30] Zhao, X.J., Rajapakse, R.K.N.D.: Analytical solutions for a surface loaded isotropic elastic layer with surface energy effects. Int. J. Eng. Sci. 47, 1433-1444 (2009) · Zbl 1213.74243 · doi:10.1016/j.ijengsci.2008.12.013
[31] Wang, Z.Q., Zhao, Y.P., Huang, Z.P.: The effects of surface tension on the elastic properties of nano structures. Int. J. Eng. Sci. 48, 140-150 (2010) · doi:10.1016/j.ijengsci.2009.07.007
[32] Chiu, M.S., Chen, T.: Bending and resonance behavior of nanowires based on Timoshenko beam theory with high-order surface stress effects. Physica E 54, 149-156 (2013) · doi:10.1016/j.physe.2013.06.013
[33] Ansari, R., Sahmani, S.: Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories. Int. J. Eng. Sci. 49, 1244-1255 (2011) · doi:10.1016/j.ijengsci.2011.01.007
[34] Ansari, R., Sahmani, S.: Surface stress effects on the free vibration behavior of nanoplates. Int. J. Eng. Sci. 49, 1204-1215 (2011) · Zbl 1423.74532 · doi:10.1016/j.ijengsci.2011.06.005
[35] Wang, L.: Surface effect on buckling configuration of nanobeams containing internal flowing fluid: a nonlinear analysis. Physica E 44, 808-812 (2012) · doi:10.1016/j.physe.2011.12.006
[36] Gao, F., Cheng, Q., Luo, J.: Mechanics of nanowire buckling on elastomeric substrates with consideration of surface stress effects. Physica E 64, 72-77 (2014) · doi:10.1016/j.physe.2014.07.006
[37] Sahmani, S., Bahrami, M., Ansari, R.: Surface energy effects on the free vibration characteristics of postbuckled third-order shear deformable nanobeams. Compos. Struct. 116, 552-561 (2014) · doi:10.1016/j.compstruct.2014.05.035
[38] Shaat, M., Mahmoud, F.F., Gao, X.L., Faheem, A.F.: Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects. Int. J. Mech. Sci. 79, 31-37 (2014) · doi:10.1016/j.ijmecsci.2013.11.022
[39] Sahmani, S., Bahrami, M., Aghdam, M.M., Ansari, R.: Surface effects on the nonlinear forced vibration response of third-order shear deformable nanobeams. Compos. Struct. 118, 149-158 (2014) · doi:10.1016/j.compstruct.2014.07.026
[40] Liang, X., Hu, S., Shen, S.: Surface effects on the post-buckling of piezoelectric nanowires. Physica E 69, 61-64 (2015) · doi:10.1016/j.physe.2015.01.019
[41] Sahmani, S., Aghdam, M.M., Bahrami, M.: On the free vibration characteristics of postbuckled third-order shear deformable FGM nanobeams including surface effects. Compos. Struct. 121, 377-385 (2015) · doi:10.1016/j.compstruct.2014.11.033
[42] Sahmani, S., Bahrami, M., Aghdam, M.M., Ansari, R.: Postbuckling behavior of circular higher-order shear deformable nanoplates including surface energy effects. Appl. Math. Model. 39, 3678-3689 (2015) · Zbl 1443.74226 · doi:10.1016/j.apm.2014.12.002
[43] Sahmani, S., Aghdam, M.M.: Imperfection sensitivity of the size-dependent postbuckling response of pressurized FGM nanoshells in thermal environments. Arch. Civil Mech. Eng. 17, 623-638 (2017) · doi:10.1016/j.acme.2017.01.004
[44] Sahmani, S., Aghdam, M.M., Bahrami, M.: Nonlinear buckling and postbuckling behavior of cylindrical shear deformable nanoshells subjected to radial compression including surface free energy effects. Acta Mech. Solida Sin. 30, 209-222 (2017) · Zbl 1380.74094 · doi:10.1016/j.camss.2017.02.002
[45] Sahmani, S., Aghdam, M.M., Bahrami, M.: Surface free energy effects on the postbuckling behavior of cylindrical shear deformable nanoshells under combined axial and radial compressions. Meccanica 52, 1329-1352 (2017) · Zbl 1380.74094 · doi:10.1007/s11012-016-0465-4
[46] Fares, M.E., Elmarghany, M.K., Atta, D.: An efficient and simple refined theory for bending and vibration of functionally graded plates. Compos. Struct. 91, 296-305 (2009) · doi:10.1016/j.compstruct.2009.05.008
[47] Donnell, L.H.: Beam, Plates and Shells. McGraw-Hill, New York (1976) · Zbl 0375.73053
[48] Shen, H.-S.: Postbuckling of nanotube-reinforced composite cylindrical panels resting on elastic foundations subjected to lateral pressure in thermal environments. Eng. Struct. 122, 174-183 (2016) · doi:10.1016/j.engstruct.2016.05.004
[49] Shen, H.-S., Xiang, Y.: Postbuckling of pressure-loaded nanotube-reinforced composite doubly curved panels resting on elastic foundations in thermal environments. Int. J. Mech. Sci. 107, 225-234 (2016) · doi:10.1016/j.ijmecsci.2016.01.004
[50] Shen, H.-S., Wang, H.: Postbuckling of pressure-loaded FGM doubly curved panels resting on elastic foundations in thermal environments. Thin Walled Struct. 100, 124-133 (2016) · doi:10.1016/j.tws.2015.11.015
[51] Sahmani, S., Bahrami, M., Aghdam, M.M.: Surface stress effects on the nonlinear postbuckling characteristics of geometrically imperfect cylindrical nanoshells subjected to axial compression. Int. J. Eng. Sci. 99, 92-106 (2016) · Zbl 1423.74021 · doi:10.1016/j.ijengsci.2015.10.010
[52] Sahmani, S., Aghdam, M.M., Akbarzadeh, A.H.: Size-dependent buckling and postbuckling behavior of piezoelectric cylindrical nanoshells subjected to compression and electrical load. Mater. Des. 105, 341-351 (2016) · doi:10.1016/j.matdes.2016.05.065
[53] Sahmani, S., Aghdam, M.M.: Temperature-dependent nonlocal instability of hybrid FGM exponential shear deformable nanoshells including imperfection sensitivity. Int. J. Mech. Sci. 122, 129-142 (2017) · doi:10.1016/j.ijmecsci.2017.01.009
[54] Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139-147 (2000) · doi:10.1088/0957-4484/11/3/301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.