×

Anisotropic structure of two-dimensional linear Cosserat elasticity. (English) Zbl 1524.74084

Summary: In the present contribution the anisotropic structure of the two-dimensional linear Cosserat elasticity is investigated. The symmetry classes of this model are derived and detailed in a synthetic way. Particular attention is paid to specific features of Cosserat elasticity: sensitivity to non-centrosymmetry and to chirality. These aspects are important for the application of this continuum theory to the mechanical modelling of lattices and metamaterials. In order to give a parameterisation to the Cosserat constitutive law, an explicit harmonic decomposition of its constitutive tensors is provided. Finally, using an algorithm introduced in a side paper, a minimal integrity basis, which is the minimal set of polynomial invariants generating the algebra of \(\mathrm{O}(2)\)-invariant polynomials, is reported.

MSC:

74E10 Anisotropy in solid mechanics
74Q15 Effective constitutive equations in solid mechanics
Full Text: DOI

References:

[1] 10.3390/sym12040674 · doi:10.3390/sym12040674
[2] 10.1016/j.compscitech.2009.07.009 · doi:10.1016/j.compscitech.2009.07.009
[3] 10.1002/nme.2922 · Zbl 1202.74132 · doi:10.1002/nme.2922
[4] 10.1016/j.ijsolstr.2008.09.009 · Zbl 1168.74319 · doi:10.1016/j.ijsolstr.2008.09.009
[5] 10.1016/j.jmps.2013.01.003 · Zbl 1260.74012 · doi:10.1016/j.jmps.2013.01.003
[6] 10.1016/j.ijsolstr.2015.04.036 · doi:10.1016/j.ijsolstr.2015.04.036
[7] 10.1177/1081286516649017 · Zbl 1391.74020 · doi:10.1177/1081286516649017
[8] 10.1016/j.ijsolstr.2018.09.029 · doi:10.1016/j.ijsolstr.2018.09.029
[9] 10.1016/j.euromechsol.2020.104202 · Zbl 1485.74008 · doi:10.1016/j.euromechsol.2020.104202
[10] 10.1016/j.compstruct.2014.05.033 · doi:10.1016/j.compstruct.2014.05.033
[11] 10.1016/j.ijsolstr.2016.01.005 · doi:10.1016/j.ijsolstr.2016.01.005
[12] ; Bacigalupo, A.; Gambarotta, L., Wave propagation in non-centrosymmetric beam-lattices with lumped masses: discrete and micropolar modeling, Internat. J. Solids Structures, 118, 128 (2017)
[13] ; Bensoussan, Alain; Lions, Jacques-Louis; Papanicolaou, George, Asymptotic analysis for periodic structures. Studies in Mathematics and its Applications, 5 (1978) · Zbl 0404.35001
[14] 10.1137/17M1149018 · Zbl 1402.35028 · doi:10.1137/17M1149018
[15] 10.1007/s00158-016-1589-9 · doi:10.1007/s00158-016-1589-9
[16] 10.1016/j.jmps.2019.07.014 · doi:10.1016/j.jmps.2019.07.014
[17] ; Chen, Y.; Liu, X. N.; Hu, G. K.; Sun, Q. P., Micropolar continuum modelling of bi-dimensional tetrachiral lattices, Proc. R. Soc. A, 470, 2165, 20130734 (2014)
[18] 10.1016/j.jmps.2020.103877 · doi:10.1016/j.jmps.2020.103877
[19] ; Chen, X.; Yvonnet, J.; Park, H. S.; Yao, S., Enhanced converse flexoelectricity in piezoelectric composites by coupling topology optimization with homogenization, J. Appl. Phys., 129, 24, 245104 (2021)
[20] 10.1002/nme.6352 · Zbl 07863276 · doi:10.1002/nme.6352
[21] ; E. Cosserat; F. Cosserat, Théorie des corps déformables (1909) · JFM 40.0862.02
[22] 10.1007/s00161-019-00806-x · doi:10.1007/s00161-019-00806-x
[23] 10.1007/s00161-019-00794-y · Zbl 1451.74047 · doi:10.1007/s00161-019-00794-y
[24] 10.1016/j.compstruct.2017.02.043 · doi:10.1016/j.compstruct.2017.02.043
[25] 10.1177/1081286515582862 · Zbl 1332.74003 · doi:10.1177/1081286515582862
[26] 10.1007/978-3-642-28353-6 · Zbl 1257.74002 · doi:10.1007/978-3-642-28353-6
[27] 10.1007/978-1-4612-0555-5 · Zbl 0953.74002 · doi:10.1007/978-1-4612-0555-5
[28] ; Fatemi, J.; Onck, P.; Poort, G.; Van Keulen, F., Cosserat moduli of anisotropic cancellous bone: a micromechanical analysis, J. Physique 4, 105, 273 (2003)
[29] 10.1016/S0045-7825(03)00348-7 · Zbl 1054.74727 · doi:10.1016/S0045-7825(03)00348-7
[30] 10.1016/j.ijsolstr.2006.05.012 · Zbl 1102.74003 · doi:10.1016/j.ijsolstr.2006.05.012
[31] 10.1126/science.aao4640 · doi:10.1126/science.aao4640
[32] 10.1016/j.ijsolstr.2020.06.005 · doi:10.1016/j.ijsolstr.2020.06.005
[33] 10.1007/978-1-4612-4574-2 · doi:10.1007/978-1-4612-4574-2
[34] 10.1098/rspa.2010.0660 · Zbl 1237.74008 · doi:10.1098/rspa.2010.0660
[35] 10.1007/s11831-008-9028-8 · Zbl 1170.74304 · doi:10.1007/s11831-008-9028-8
[36] 10.1016/j.jmps.2019.103728 · Zbl 1481.74108 · doi:10.1016/j.jmps.2019.103728
[37] 10.1016/0020-7225(82)90096-9 · Zbl 0491.73004 · doi:10.1016/0020-7225(82)90096-9
[38] 10.1016/j.jmps.2012.06.008 · doi:10.1016/j.jmps.2012.06.008
[39] 10.1007/BF00248490 · Zbl 0119.40302 · doi:10.1007/BF00248490
[40] 10.1016/0020-7683(65)90006-5 · doi:10.1016/0020-7683(65)90006-5
[41] 10.1016/0020-7683(68)90036-X · Zbl 0166.20601 · doi:10.1016/0020-7683(68)90036-X
[42] 10.1016/j.taml.2016.02.004 · doi:10.1016/j.taml.2016.02.004
[43] 10.1103/PhysRevLett.124.084301 · doi:10.1103/PhysRevLett.124.084301
[44] 10.1007/978-3-642-35245-4 · Zbl 1276.35002 · doi:10.1007/978-3-642-35245-4
[45] 10.1016/j.taml.2018.04.010 · doi:10.1016/j.taml.2018.04.010
[46] 10.1016/0021-9290(86)90015-1 · doi:10.1016/0021-9290(86)90015-1
[47] 10.1007/s00707-012-0662-8 · Zbl 1401.74017 · doi:10.1007/s00707-012-0662-8
[48] 10.1016/S0020-7403(96)00025-2 · Zbl 0894.73018 · doi:10.1016/S0020-7403(96)00025-2
[49] 10.1016/j.wavemoti.2016.01.009 · Zbl 1469.74030 · doi:10.1016/j.wavemoti.2016.01.009
[50] 10.1016/j.euromechsol.2019.103803 · Zbl 1473.74077 · doi:10.1016/j.euromechsol.2019.103803
[51] ; Rovati, M.; Veber, D., Optimal topologies for micropolar solids, Struct. Multidisc. Optimiz., 33, 1, 47 (2007)
[52] 10.1016/j.jtbi.2017.04.012 · Zbl 1370.92024 · doi:10.1016/j.jtbi.2017.04.012
[53] 10.1016/j.jmps.2011.09.012 · doi:10.1016/j.jmps.2011.09.012
[54] 10.1007/BF00253945 · Zbl 0112.16805 · doi:10.1007/BF00253945
[55] 10.1016/S0020-7683(98)00073-0 · Zbl 0959.74004 · doi:10.1016/S0020-7683(98)00073-0
[56] 10.1016/j.ijsolstr.2010.01.002 · Zbl 1193.74021 · doi:10.1016/j.ijsolstr.2010.01.002
[57] ; Vianello, M., An integrity basis for plane elasticity tensors, Arch. Mech. (Arch. Mech. Stos.), 49, 1, 197 (1997) · Zbl 0876.73011
[58] ; Weyl, Hermann, The classical groups: their invariants and representations (1939) · Zbl 0020.20601
[59] ; Yildizdag, M.; Tran, C.; Barchiesi, E.; Spagnuolo, M.; dell’Isola, F.; Hild, F., A multi-disciplinary approach for mechanical metamaterial synthesis: a hierarchical modular multiscale cellular structure paradigm, State of the art and future trends in material modeling, 485 (2019)
[60] 10.1007/978-3-030-18383-7 · Zbl 1425.74003 · doi:10.1007/978-3-030-18383-7
[61] 10.1007/BF01178519 · Zbl 0811.73002 · doi:10.1007/BF01178519
[62] 10.1016/0020-7225(93)90054-X · Zbl 0791.73006 · doi:10.1016/0020-7225(93)90054-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.