×

Computing spectral measures of self-adjoint operators. (English) Zbl 07379587

Summary: Using the resolvent operator, we develop an algorithm for computing smoothed approximations of spectral measures associated with self-adjoint operators. The algorithm can achieve arbitrarily high orders of convergence in terms of a smoothing parameter for computing spectral measures of general differential, integral, and lattice operators. Explicit pointwise and \(L^p\)-error bounds are derived in terms of the local regularity of the measure. We provide numerical examples, including a partial differential operator and a magnetic tight-binding model of graphene, and compute 1000 eigenvalues of a Dirac operator to near machine precision without spectral pollution. The algorithm is publicly available in SpecSolve, which is a software package written in MATLAB.

MSC:

47A10 Spectrum, resolvent
46N40 Applications of functional analysis in numerical analysis
47N50 Applications of operator theory in the physical sciences
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis

References:

[1] A. Agazzi, J.-P. Eckmann, and G. M. Graf, The colored Hofstadter butterfly for the honeycomb lattice, J. Stat. Phys., 156 (2014), pp. 417-426. · Zbl 1296.82003
[2] W. O. Amrein and V. Georgescu, Characterization of Bound States and Scattering States in Quantum Mechanics, tech. report, University of Geneva, 1973.
[3] A. Avila and S. Jitomirskaya, The ten martini problem, Ann. of Math. (2), 170 (2009), pp. 303-342. · Zbl 1166.47031
[4] Z. Bai and J. W. Silverstein, Spectral Analysis of Large Dimensional Random Matrices, Springer Ser. Statist. 20, Springer, 2010. · Zbl 1301.60002
[5] N. Beer and D. G. Pettifor, The recursion method and the estimation of local densities of states, in The Electronic Structure of Complex Systems, Springer, 1984, pp. 769-777.
[6] P. Billingsley, Convergence of Probability Measures, 2nd ed., John Wiley & Sons, 1999. · Zbl 0944.60003
[7] D. Bilman and T. Trogdon, Numerical inverse scattering for the Toda lattice, Comm. Math. Phys., 352 (2017), pp. 805-879. · Zbl 1369.65170
[8] A. Böttcher and B. Silbermann, Introduction to Large Truncated Toeplitz Matrices, Springer-Verlag, New York, 1999. · Zbl 0916.15012
[9] J. P. Boyd, Chebyshev and Fourier Spectral Methods, Courier Corporation, 2001. · Zbl 0994.65128
[10] R. Carmona and J. Lacroix, Spectral Theory of Random Schrödinger Operators, Prob. Appl., Birkhäuser Boston, 1990. · Zbl 0717.60074
[11] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Modern Phys., 81 (2009), pp. 109-162.
[12] K. Chang, A physics magic trick: Take 2 sheets of carbon and twist, The New York Times, 2019, https://www.nytimes.com/2019/10/30/science/graphene-physics-superconductor.html.
[13] F. Chatelin, Spectral Approximation of Linear Operators, Academic Press, 1983. · Zbl 0517.65036
[14] T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, London, Paris, 1978. · Zbl 0389.33008
[15] E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, Krieger, Malabar, FL, 1984. · Zbl 0064.33002
[16] M. J. Colbrook, Computing spectral measures and spectral types, Comm. Math. Phys., 384 (2021), pp. 433-501. · Zbl 07348142
[17] M. J. Colbrook, The Foundations of Infinite-Dimensional Spectral Computations, Ph.D. thesis, University of Cambridge, 2020.
[18] M. J. Colbrook and A. C. Hansen, The Foundations of Spectral Computations via the Solvability Complexity Index Hierarchy: Part I, preprint, https://arxiv.org/abs/1908.09592, 2019.
[19] M. J. Colbrook and A. C. Hansen, On the infinite-dimensional QR algorithm, Numer. Math., 143 (2019), pp. 17-83. · Zbl 1530.65055
[20] M. J. Colbrook, A. Horning, and A. Townsend, SpecSolve, GitHub, https://github.com/SpecSolve, 2020.
[21] M. J. Colbrook, B. Roman, and A. C. Hansen, How to compute spectra with error control, Phys. Rev. Lett., 122 (2019), art. 250201, https://doi.org/10.1103/PhysRevLett.122.250201.
[22] H. Cramér, On some classes of nonstationary stochastic processes, in Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 2, University of Los Angeles Press, Berkeley, Los Angeles, 1961, pp. 57-78. · Zbl 0121.35001
[23] D. Damanik, Singular continuous spectrum for a class of substitution Hamiltonians, Lett. Math. Phys., 46 (1998), pp. 303-311. · Zbl 0930.11007
[24] D. Damanik, M. Embree, and A. Gorodetski, Spectral properties of Schrödinger operators arising in the study of quasicrystals, in Mathematics of Aperiodic Order, Springer, 2015, pp. 307-370. · Zbl 1378.81031
[25] D. Damanik and B. Simon, Jost functions and Jost solutions for Jacobi matrices, I. A necessary and sufficient condition for Szegö asymptotics, Invent. Math., 165 (2006), pp. 1-50. · Zbl 1122.47029
[26] P. Deift, Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach, Courant Lecture Notes 3, AMS, Providence, RI, 1999. · Zbl 0997.47033
[27] F. Dell’Oro and V. Pata, Second order linear evolution equations with general dissipation, Appl. Math. Opt., 2019, https://doi.org/10.1007/s00245-019-09613-x. · Zbl 1469.35155
[28] J. Dombrowski and P. Nevai, Orthogonal polynomials, measures and recurrence relations, SIAM J. Math. Anal., 17 (1986), pp. 752-759, https://doi.org/10.1137/0517054. · Zbl 0595.42011
[29] K. Dong, A. R. Benson, and D. Bindel, Network density of states, in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp. 1152-1161.
[30] G. W. F. Drake and S. P. Goldman, Application of discrete-basis-set methods to the Dirac equation, Phys. Rev. A, 23 (1981), art. 2093.
[31] N. Dunford and J. T. Schwartz, Linear Operators: Part II: Spectral Theory: Self Adjoint Operators in Hilbert Space, Interscience, 1963. · Zbl 0128.34803
[32] K. G. Dyall and K. F\aegri, Jr., Kinetic balance and variational bounds failure in the solution of the Dirac equation in a finite Gaussian basis set, Chem. Phys. Lett., 174 (1990), pp. 25-32.
[33] V. D. Efros, W. Leidemann, and G. Orlandini, Response functions from integral transforms with a Lorentz kernel, Phys. Lett. B, 338 (1994), pp. 130-133.
[34] V. D. Efros, W. Leidemann, G. Orlandini, and N. Barnea, The Lorentz integral transform (LIT) method and its applications to perturbation-induced reactions, J. Phys. G, 34 (2007), art. R459.
[35] V. D. Efros, W. Leidemann, and V. Y. Shalamova, On calculating response functions via their Lorentz integral transforms, Few-Body Syst., 60 (2019), art. 35.
[36] V. Enss, Asymptotic completeness for quantum mechanical potential scattering, Comm. Math. Phys., 61 (1978), pp. 285-291. · Zbl 0389.47005
[37] L. C. Evans, Partial Differential Equations, 2nd ed., Grad. Stud. Math. 19, AMS, 2010. · Zbl 1194.35001
[38] K. O. Friedrichs, On the perturbation of continuous spectra, Commun. Pure Appl. Math., 1 (1948), pp. 361-406. · Zbl 0031.31204
[39] C. Fulton, D. Pearson, and S. Pruess, Computing the spectral function for singular Sturm-Liouville problems, J. Comput. Appl. Math., 176 (2005), pp. 131-162. · Zbl 1064.65075
[40] C. Fulton, D. Pearson, and S. Pruess, New characterizations of spectral density functions for singular Sturm-Liouville problems, J. Comput. Appl. Math., 212 (2008), pp. 194-213. · Zbl 1153.65079
[41] C. Fulton and S. Pruess, The computation of spectral density functions for singular Sturm-Liouville problems involving simple continuous spectra, ACM Trans. Math. Soft., 24 (1998), pp. 107-129. · Zbl 0920.65051
[42] C. Fulton, S. Pruess, and W. Shoaff, Parallel computation of Sturm-Liouville spectral density functions, Parallel Algorithms Appl., 4 (1994), pp. 41-51. · Zbl 1049.68956
[43] F. Gamboa, J. Nagel, and A. Rouault, Sum rules via large deviations, J. Funct. Anal., 270 (2016), pp. 509-559. · Zbl 1327.47028
[44] V. Girardin and R. Senoussi, Semigroup stationary processes and spectral representation, Bernoulli, 9 (2003), pp. 857-876. · Zbl 1043.60026
[45] I. M. Glazman, Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators, Israel Program for Scientific Translations, 1965. · Zbl 0143.36505
[46] A. Y. Gordon, S. Jitomirskaya, Y. Last, and B. Simon, Duality and singular continuous spectrum in the almost Mathieu equation, Acta Math., 178 (1997), pp. 169-183. · Zbl 0897.34074
[47] K. Gustafson, Operator spectral states, Comput. Math. Appl., 34 (1997), pp. 467-508. · Zbl 0909.47001
[48] B. C. Hall, Quantum Theory for Mathematicians, Grad. Texts in Math. 267, Springer, 2013. · Zbl 1273.81001
[49] M. Hamzavi, K.-E. Thylwe, and A. Rajabi, Approximate bound states solution of the Hellmann potential, Commun. Theoret. Phys., 60 (2013), pp. 1-8. · Zbl 1284.81114
[50] R. Haydock, V. Heine, and M. J. Kelly, Electronic structure based on the local atomic environment for tight-binding bands, J. Phys. C Solid State Phys., 5 (1972), pp. 2845-2858.
[51] H. Hellmann, A new approximation method in the problem of many electrons, J. Chem. Phys., 3 (1935), p. 61.
[52] M. Hochbruck and A. Ostermann, Exponential integrators, Acta Numer., 19 (2010), pp. 209-286. · Zbl 1242.65109
[53] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, 1962. · Zbl 0117.34001
[54] D. R. Hofstadter, Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields, Phys. Rev. B, 14 (1976), pp. 2239-2249.
[55] A. Horning and A. Townsend, FEAST for differential eigenvalue problems, SIAM J. Numer. Anal., 58 (2020), pp. 1239-1262, https://doi.org/10.1137/19M1238708. · Zbl 1439.65088
[56] D. Hundertmark, M. Meyries, L. Machinek, and R. Schnaubelt, Operator semigroups and dispersive equations, in 16th Internet Seminar on Evolution Equations, 2013, pp. 1-8, https://www.math.kit.edu/iana3/ schnaubelt/media/isem16-skript.pdf.
[57] S. Joe, Discrete collocation methods for second kind Fredholm integral equations, SIAM J. Numer. Anal., 22 (1985), pp. 1167-1177, https://doi.org/10.1137/0722070. · Zbl 0597.65095
[58] O. Kallenberg, Foundations of Modern Probability, Springer Science & Business Media, 2006. · Zbl 0996.60001
[59] G. Kallianpur and V. Mandrekar, Spectral theory of stationary H-valued processes, J. Multivar. Anal., 1 (1971), pp. 1-16. · Zbl 0248.60028
[60] T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Grundlehren Math. Wiss. 132, Springer Science & Business Media, 1976. · Zbl 0342.47009
[61] A. Kiejna and K. F. Wojciechowski, Metal Surface Electron Physics, Elsevier, 1996.
[62] R. Killip and B. Simon, Sum rules for Jacobi matrices and their applications to spectral theory, Ann. of Math. (2), 158 (2003), pp. 253-321. · Zbl 1050.47025
[63] W. Koppelman, On the spectral theory of singular integral operators, Trans. Amer. Math. Soc., 97 (1960), pp. 35-63. · Zbl 0100.31201
[64] W. Kutzelnigg, Basis set expansion of the Dirac operator without variational collapse, Internat. J. Quant. Chem., 25 (1984), pp. 107-129.
[65] W. Kutzelnigg, Relativistic one-electron Hamiltonians for electrons only and the variational treatment of the Dirac equation, Chem. Phys., 225 (1997), pp. 203-222.
[66] P. W. Langhoff, Stieltjes-Tchebycheff moment-theory approach to photoeffect studies in Hilbert space, in Theory and Applications of Moment Methods in Many-Fermion Systems, Springer, 1980, pp. 191-212.
[67] B. M. Levitan and I. S. Sargsian, Introduction to Spectral Theory: Selfadjoint Ordinary Differential Operators, Transl. Math. Monogr. 39, AMS, 1975. · Zbl 0302.47036
[68] M. Lewin and E. Séré, Spectral pollution and how to avoid it (with applications to Dirac and periodic Schrödinger operators), Proc. Lond. Math. Soc. (3), 100 (2010), pp. 864-900, https://doi.org/10.1112/plms/pdp046. · Zbl 1192.47016
[69] J. Liesen and Z. Strakos, Krylov Subspace Methods: Principles and Analysis, Oxford University Press, Oxford, 2013. · Zbl 1263.65034
[70] L. Lin, Y. Saad, and C. Yang, Approximating spectral densities of large matrices, SIAM Rev., 58 (2016), pp. 34-65, https://doi.org/10.1137/130934283. · Zbl 1338.15026
[71] X. Lu, P. Stepanov, W. Yang et al., Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene, Nature, 574 (2019), pp. 653-657.
[72] C. Lubich, From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2008. · Zbl 1160.81001
[73] V. A. Marchenko, Sturm-Liouville Operators and Applications, AMS, 2011. · Zbl 1298.34001
[74] R. I. McLachlan and G. R. W. Quispel, Splitting methods, Acta Numer., 11 (2002), pp. 341-434. · Zbl 1105.65341
[75] W. C. H. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, 2000. · Zbl 0948.35001
[76] K. S. Novoselov, Nobel lecture: Graphene: Materials in the flatland, Rev. Modern Phys., 83 (2011), pp. 837-849.
[77] S. Olver and A. Townsend, A fast and well-conditioned spectral method, SIAM Rev., 55 (2013), pp. 462-489, https://doi.org/10.1137/120865458. · Zbl 1273.65182
[78] E. Parzen, On consistent estimates of the spectrum of a stationary time series, Ann. Math. Stat., 28 (1957), pp. 329-348. · Zbl 0081.14102
[79] E. Parzen, Mathematical considerations in the estimation of spectra, Technometrics, 3 (1961), pp. 167-190. · Zbl 0101.12306
[80] E. Parzen, On estimation of a probability density function and mode, Ann. Math. Statist., 33 (1962), pp. 1065-1076. · Zbl 0116.11302
[81] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci. 44, Springer Science & Business Media, 2012. · Zbl 0516.47023
[82] L. A. Ponomarenko, R. V. Gorbachev, G. L. Yu, D. C. Elias, R. Jalil, A. A. Patel, A. Mishchenko, A. S. Mayorov, C. R. Woods, J. R. Wallbank et al., Cloning of Dirac fermions in graphene superlattices, Nature, 497 (2013), pp. 594-597.
[83] M. B. Priestley, Basic considerations in the estimation of spectra, Technometrics, 4 (1962), pp. 551-564. · Zbl 0213.43802
[84] S. Pruess and C. T. Fulton, Mathematical software for Sturm-Liouville problems, ACM Trans. Math. Soft., 19 (1993), pp. 360-376. · Zbl 0890.65087
[85] S. Pruess and C. T. Fulton, Error analysis in the approximation of Sturm-Liouville spectral density functions, J. Math. Anal. Appl., 203 (1996), pp. 518-539. · Zbl 0869.65051
[86] C. Puelz, M. Embree, and J. Fillman, Spectral approximation for quasiperiodic Jacobi operators, Integral Equations Operator Theory, 82 (2015), pp. 533-554. · Zbl 1325.47069
[87] M. Reed and B. Simon, Methods of Modern Mathematical Physics. I, 2nd ed., Academic Press, Harcourt Brace Jovanovich, New York, 1980. · Zbl 0459.46001
[88] M. Rosenblatt, Remarks on some nonparametric estimates of a density function, Ann. Math. Statist., 27 (1956), pp. 832-837. · Zbl 0073.14602
[89] M. Rosenblatt, Stochastic Curve Estimation, NSF-CBMS Reg. Conf. Ser. Probab. Statist. 3, Institute of Mathematical Statistics, 1991. · Zbl 1163.62318
[90] D. Ruelle, A remark on bound states in potential-scattering theory, Nuovo Cimento A (10), 61 (1969), pp. 655-662.
[91] V. M. Shabaev, I. I. Tupitsyn, V. A. Yerokhin, G. Plunien, and G. Soff, Dual kinetic balance approach to basis-set expansions for the Dirac equation, Phys. Rev. Lett., 93 (2004), art. 130405.
[92] R. N. Silver and H. Röder, Densities of states of mega-dimensional Hamiltonian matrices, Internat. J. Modern Phys. C, 5 (1994), pp. 735-753.
[93] B. W. Silverman, Density Estimation for Statistics and Data Analysis, Routledge, 2018.
[94] B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc., 7 (1982), pp. 447-526. · Zbl 0524.35002
[95] B. Simon, Szegö’s Theorem and Its Descendants: Spectral Theory for \(L^2\) Perturbations of Orthogonal Polynomials, Porter Lect. 6, Princeton University Press, 2010.
[96] R. E. Stanton and S. Havriliak, Kinetic balance: A partial solution to the problem of variational safety in Dirac calculations, J. Chem. Phys., 81 (1984), pp. 1910-1918.
[97] E. M. Stein and R. Shakarchi, Real Analysis: Measure Theory, Integration, and Hilbert Spaces, Princeton University Press, 2009. · Zbl 1081.28001
[98] E. M. Stein and R. Shakarchi, Functional Analysis: Introduction to Further Topics in Analysis, Princeton Lect. Anal. 4, Princeton University Press, 2011. · Zbl 1235.46001
[99] P. Stoica and R. L. Moses, Spectral Analysis of Signals, Pearson Prentice Hall, Upper Saddle River, NJ, 2005.
[100] M. Stone and P. Goldbart, Mathematics for Physics: A Guided Tour for Graduate Students, Cambridge University Press, 2009. · Zbl 1173.00013
[101] M. H. Stone, Linear Transformations in Hilbert Space, Amer. Math. Soc. Colloq. Pub. 15, AMS, Providence, RI, 1990. · Zbl 0933.47001
[102] A. Sütö, Singular continuous spectrum on a Cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian, J. Statist. Phys., 56 (1989), pp. 525-531. · Zbl 0712.58046
[103] G. Szegö, Orthogonal Polynomials, AMS, New York, 1939. · Zbl 0023.21505
[104] J. D. Talman, Minimax principle for the Dirac equation, Phys. Rev. Lett., 57 (1986), pp. 1091-1094.
[105] D. J. Tannor, Introduction to Quantum Mechanics: A Time-Dependent Perspective, University Science Books, 2007.
[106] G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices, Math. Surv. Monogr. 72, AMS, Providence, RI, 2000. · Zbl 1056.39029
[107] B. Thaller, The Dirac Equation, Texts Monogr. Phys., Springer-Verlag, Berlin, 1992, https://doi.org/10.1007/978-3-662-02753-0. · Zbl 0765.47023
[108] E. C. Titchmarsh, Eigenfunction Expansions Associated with Second Order Differential Equations, Part I, 2nd ed., Oxford University Press, 1962. · Zbl 0099.05201
[109] T. Touhei, A scattering problem by means of the spectral representation of Green’s function for a layered acoustic half-space, Comput. Mech., 25 (2000), pp. 477-488. · Zbl 0965.74028
[110] A. Townsend and L. N. Trefethen, An extension of Chebfun to two dimensions, SIAM J. Sci. Comput., 35 (2013), pp. C495-C518, https://doi.org/10.1137/130908002. · Zbl 1300.65010
[111] L. N. Trefethen, Approximation Theory and Approximation Practice. Extended Edition, SIAM, Philadelphia, PA, 2019, https://doi.org/10.1137/1.9781611975949. · Zbl 1264.41001
[112] L. N. Trefethen and D. Bau III, Numerical Linear Algebra, SIAM, Philadelphia, PA, 1997, https://doi.org/10.1137/1.9781611971446. · Zbl 0874.65013
[113] L. N. Trefethen and J. A. C. Weideman, The exponentially convergent trapezoidal rule, SIAM Rev., 56 (2014), pp. 385-458, https://doi.org/10.1137/130932132. · Zbl 1307.65031
[114] T. Trogdon, S. Olver, and B. Deconinck, Numerical inverse scattering for the Korteweg-de Vries and modified Korteweg-de Vries equations, Phys. D, 241 (2012), pp. 1003-1025. · Zbl 1248.65108
[115] A. B. Tsybakov, Introduction to Nonparametric Estimation, Springer Science & Business Media, 2008. · Zbl 1176.62032
[116] M. P. Wand and M. C. Jones, Kernel Smoothing, Chapman and Hall/CRC, 1994. · Zbl 0854.62043
[117] M. Webb and S. Olver, Spectra of Jacobi operators via connection coefficient matrices, Comm. Math. Phys., 382 (2021), pp. 657-707. · Zbl 1518.47055
[118] A. Weiße, G. Wellein, A. Alvermann, and H. Fehske, The kernel polynomial method, Rev. Modern Phys., 78 (2006), pp. 275-306. · Zbl 1205.81090
[119] J. Wilkening and A. Cerfon, A spectral transform method for singular Sturm-Liouville problems with applications to energy diffusion in plasma physics, SIAM J. Appl. Math., 75 (2015), pp. 350-392, https://doi.org/10.1137/130941948. · Zbl 1325.65144
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.