×

Locality of the windowed local density of states. (English) Zbl 07839437

Summary: We consider a generalization of local density of states which is “windowed” with respect to position and energy, called the windowed local density of states (wLDOS). This definition generalizes the usual LDOS in the sense that the usual LDOS is recovered in the limit where the position window captures individual sites and the energy window is a delta distribution. We prove that the wLDOS is local in the sense that it can be computed up to arbitrarily small error using spatial truncations of the system Hamiltonian. Using this result we prove that the wLDOS is well-defined and computable for infinite systems satisfying some natural assumptions. We finally present numerical computations of the wLDOS at the edge and in the bulk of a “Fibonacci SSH model”, a one-dimensional non-periodic model with topological edge states.

MSC:

81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis

References:

[1] Aizenman, M., Warzel, S.: Random operators. In: Graduate Studies in Mathematics. Disorder Effects on Quantum Spectra and Dynamics, vol. 168. American Mathematical Society, Providence, pp. xiv+326 (2015) · Zbl 1333.82001
[2] Altland, A.; Zirnbauer, MR, Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures, Phys. Rev. B, 55, 2, 1142, 1997 · doi:10.1103/PhysRevB.55.1142
[3] Asbóth, JK; Oroszlány, L.; Pályi, A., A Short Course on Topological Insulators, 2016, Berlin: Springer, Berlin · Zbl 1331.82002 · doi:10.1007/978-3-319-25607-8
[4] Baake, M.; Grimm, U., Aperiodic Order. Encyclopedia of Mathematics and Its Applications, 2013, Cambridge: Cambridge University Press, Cambridge · Zbl 1295.37001
[5] Beckus, S.; Bellissard, J.; De Nittis, G., Spectral continuity for aperiodic quantum systems: applications of a folklore theorem, J. Math. Phys., 61, 12, 2020 · Zbl 1472.82015 · doi:10.1063/5.0011488
[6] Carr, S.; Massatt, D.; Fang, S.; Cazeaux, P.; Luskin, M.; Kaxiras, E., Twistronics: manipulating the electronic properties of two-dimensional layered structures through their twist angle, Phys. Rev. B, 95, 7, 1-6, 2017 · doi:10.1103/PhysRevB.95.075420
[7] Chen, H.; Ortner, C., QM/MM methods for crystalline defects. Part 1: locality of the tight binding model, Multiscale Model. Simul., 14, 1, 232-264, 2016 · Zbl 1381.81012 · doi:10.1137/15M1022628
[8] Colbrook, M.; Horning, A.; Townsend, A., Computing spectral measures of self-adjoint operators, SIAM Rev., 63, 3, 489-524, 2021 · Zbl 07379587 · doi:10.1137/20M1330944
[9] Colbrook, MJ, Computing spectral measures and spectral types, Commun. Math. Phys., 384, 433-501, 2021 · Zbl 07348142 · doi:10.1007/s00220-021-04072-4
[10] Colbrook, MJ; Horning, A.; Thicke, K.; Watson, AB, Computing spectral properties of topological insulators without artificial truncation or supercell approximation, IMA J. Appl. Math., 88, 1, 1-42, 2023 · Zbl 07684732 · doi:10.1093/imamat/hxad002
[11] Colbrook, MJ; Roman, B.; Hansen, AC, How to compute spectra with error control, Phys. Rev. Lett., 122, 25, 2019 · doi:10.1103/PhysRevLett.122.250201
[12] Damanik, D.: One-dimensional ergodic Schr ö dinger operators. In: Graduate Studies in Mathematics, vol. 221. American Mathematical Society, Providence (2022) · Zbl 1504.58001
[13] Damanik, D.; Embree, M.; Gorodetski, A.; Kellendonk, J.; Lenz, D.; Savinien, J., Spectral properties of Schrödinger operators arising in the study of quasicrystals, Mathematics of Aperiodic Order, 307-370, 2015, Basel: Springer, Basel · Zbl 1378.81031 · doi:10.1007/978-3-0348-0903-0_9
[14] Damanik, D.; Gorodetski, A.; Yessen, W., The Fibonacci Hamiltonian, Invent. Math., 206, 629-692, 2016 · Zbl 1359.81108 · doi:10.1007/s00222-016-0660-x
[15] Delaney, J.A.C.: Local density of states for one-dimensional aperiodic binary sequences using local green’s function method. Ph.D. thesis. The University of Western Ontario (1998)
[16] Fefferman, C.; Lee-Thorp, JP; Weinstein, MI, Honeycomb Schrödinger operators in the strong binding regime, Commun. Pure Appl. Math., 71, 6, 1178-1270, 2018 · Zbl 1414.35061 · doi:10.1002/cpa.21735
[17] Goedecker, S., Linear scaling electronic structure methods, Rev. Mod. Phys., 71, 4, 1085, 1999 · doi:10.1103/RevModPhys.71.1085
[18] Hastings, MB; Loring, TA, Topological insulators and \(C^*\)-algebras: theory and numerical practice, Ann. Phys., 326, 7, 1699-1759, 2011 · Zbl 1235.19003 · doi:10.1016/j.aop.2010.12.013
[19] Horning, A.J.: Computing spectral properties of infinite-dimensional operators. English. Copyright—Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works; Last updated—2023-03-08. Ph.D. thesis, p. 170 (2021)
[20] Hutchinson, MF, A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines, Commun. Stat. Simul. Comput., 18, 3, 1059-1076, 1989 · Zbl 0695.62113 · doi:10.1080/03610918908812806
[21] Kaxiras, E.; Joannopoulos, JD, Quantum Theory of Materials, 2019, Cambridge: Cambridge University Press, Cambridge · Zbl 1462.81002 · doi:10.1017/9781139030809
[22] Kitaev, A., Periodic table for topological insulators and superconductors, AIP Conf. Proc., 1134, 22, 2009 · Zbl 1180.82221 · doi:10.1063/1.3149495
[23] Lin, L.; Saad, Y.; Yang, C., Approximating spectral densities of large matrices, SIAM Rev., 58, 1, 34-65, 2016 · Zbl 1338.15026 · doi:10.1137/130934283
[24] Loring, T.A.: A guide to the Bott Index and Localizer Index. Preprint arXiv:1907.11791 (2019)
[25] Loring, TA, \(K\)-theory and pseudospectra for topological insulators, Ann. Phys., 356, 383-416, 2015 · Zbl 1343.46063 · doi:10.1016/j.aop.2015.02.031
[26] Loring, TA, Bulk spectrum and K-theory for infinite-area topological quasicrystals, J. Math. Phys., 60, 8, 81903, 2019 · Zbl 1434.82093 · doi:10.1063/1.5083051
[27] Marzari, N.; Mostofi, AA; Yates, JR; Souza, I.; Vanderbilt, D., Maximally localized Wannier functions: theory and applications, Rev. Mod. Phys., 84, 4, 1419, 2012 · doi:10.1103/RevModPhys.84.1419
[28] Massatt, D.; Carr, S.; Luskin, M.; Ortner, C., Incommensurate heterostructures in momentum space, Multiscale Model. Simul., 16, 1, 429-451, 2018 · Zbl 1434.82101 · doi:10.1137/17M1141035
[29] Massatt, D.; Luskin, M.; Ortner, C., Electronic density of states for incommensurate layers, Multiscale Model. Simul., 15, 1, 476-499, 2017 · Zbl 1365.81164 · doi:10.1137/16M1088363
[30] Nakanishi, T.; Kitaura, R.; Kawai, T.; Okada, S.; Yoshida, S.; Takeuchi, O.; Shigekawa, H.; Shinohara, H., Modulation of the local density of states of carbon nanotubes by encapsulation of europium nanowires as observed by scanning tunneling microscopy and spectroscopy, J. Phys. Chem. C, 121, 33, 18195-18201, 2017 · doi:10.1021/acs.jpcc.7b04047
[31] Ostlund, S.; Pandit, R.; Rand, D.; Schellnhuber, HJ; Siggia, ED, One-dimensional Schrödinger equation with an almost periodic potential, Phys. Rev. Lett., 50, 1873-1876, 1983 · doi:10.1103/PhysRevLett.50.1873
[32] Persson, O.; Webb, JL; Dick, KA; Thelander, C.; Mikkelsen, A.; Timm, R., Scanning tunneling spectroscopy on InAs-GaSb Esaki diode nanowire devices during operation, Nano Lett., 15, 6, 3684-3691, 2015 · doi:10.1021/acs.nanolett.5b00898
[33] Prodan, E., Quantum transport in disordered systems under magnetic fields: a study based on operator algebras, Appl. Math. Res. eXpress, 2013, 2, 176-265, 2012 · Zbl 1318.82041
[34] Su, WP; Schrieffer, JR; Heeger, AJ, Solitons in polyacetylene, Phys. Rev. Lett., 42, 25, 1698, 1979 · doi:10.1103/PhysRevLett.42.1698
[35] Sütő, A., The spectrum of a quasiperiodic Schrödinger operator, Commun. Math. Phys., 111, 409-415, 1987 · Zbl 0624.34017 · doi:10.1007/BF01238906
[36] Weinan, E.; Lu, J., Electronic structure of smoothly deformed crystals: Cauchy-Born rule for the nonlinear tight-binding model, Commun. Pure Appl. Math., 63, 11, 1432-1468, 2010 · Zbl 1277.81117 · doi:10.1002/cpa.20330
[37] Weinan, E.; Lu, J., The electronic structure of smoothly deformed crystals: Wannier functions and the Cauchy-Born rule, Arch. Ration. Mech. Anal., 199, 2, 407-433, 2011 · Zbl 1253.74025 · doi:10.1007/s00205-010-0339-1
[38] Weiße, A.; Wellein, G.; Alvermann, A.; Fehske, H., The kernel polynomial method, Rev. Mod. Phys., 78, 1, 275-306, 2006 · Zbl 1205.81090 · doi:10.1103/RevModPhys.78.275
[39] Zhong, JX; You, JQ; Yan, JR; Yan, XH, Local electronic properties of one-dimensional quasiperiodic systems, Phys. Rev. B, 43, 16, 13778-13781, 1991 · doi:10.1103/PhysRevB.43.13778
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.