×

A second-order isoparametric element method to solve plane linear elastic problem. (English) Zbl 07776030

Summary: Considering the both effect of boundary approximation and numerical quadrature, a second-order isoparametric element method is given to solve the homogeneous isotropic plane linear elasticity problem in domain \(\Omega\) with curved boundary. By using technically analysis, the optimal error estimate with \(\| \vec{\widetilde{u}} - \vec{u}_h \|_{1, \Omega_h} = O (h^2)\) is obtained, where the function \(\vec{\widetilde{u}}\) is an extension of the true solution \(\vec{u}\) to \(\widetilde{\Omega}\). It yields better accuracy than traditional quadratic finite element method. Finally, two numerical examples are presented, which further illustrate the analytical result and show the scheme is effective.
{© 2020 Wiley Periodicals LLC}

MSC:

65-XX Numerical analysis
35-XX Partial differential equations
Full Text: DOI

References:

[1] L. P.Franca and R.Stenberg, Error analysis of some Galerkin‐least‐squares methods for the elasticity equations, SIAM J. Numer. Anal.28 (1991), 1680-1697. · Zbl 0759.73055
[2] S. Y.Yang and C. L.Chang, Analysis of a two‐stage least‐squares finite element method for the planar elasticity problems, Math. Methods Appl. Sci.22 (1999), 713-732. · Zbl 0930.74068
[3] S. C.Brenner, A nonconforming mixed multigrid method for the pure displacement problem in planar linear elasticity, SIAM J. Numer. Anal.30 (1993), 116-135. · Zbl 0767.73068
[4] E. T.Chung and C. S.Lee, A mixed generalized multiscale finite element method for planar linear elasticity, J. Comput. Appl. Math.348 (2019), 298-313. · Zbl 1418.74035
[5] F.Brezzi and M.Fortin, Mixed and hybrid finite element methods, Springer‐Verlag, Berlin, Germany, 1991. · Zbl 0788.73002
[6] D. N.Arnold and R.Winther, Mixed finite elements for elasticity, Numer. Math.92 (2002), 401-419. · Zbl 1090.74051
[7] S. C.Brenner and L. Y.Sung, Linear finite element methods for planar linear elasticity, Math. Comput.59 (1992), 321-338. · Zbl 0766.73060
[8] I.Babuska and M.Suri, Locking effects in the finite element approximation of elasticity problems, Numer. Math.62 (1992), 439-463. · Zbl 0762.65057
[9] R. S.Falk, Noncomforming finite element methods for the equations of linear elasticity, Math. Comput.57 (1991), 529-550. · Zbl 0747.73044
[10] K. Y.Kim and H. C.Lee, A posteriori error estimators for nonconforming finite element methods of the linear elasticity problem, J. Comput. Appl. Math.235 (2010), 186-202. · Zbl 1427.74020
[11] P. G.Cialet, The finite element method for elliptic problem, North‐Holland, Amsterdam, Netherlands, 1978. · Zbl 0383.65058
[12] P. G.Cialet, Basic error estimates for elliptic problems, in Handbook of numerical analysis, Vol 2, Elsevier, North‐Holland, Amsterdam, 1991, 17-351. · Zbl 0875.65086
[13] P. K.Bhattacharyya and N.Nataraj, Error estimates for isoparametric mixed finite element solution of 4th order elliptic problems with variable coefficients, Comput. Mech.28 (2002), 435-455. · Zbl 1006.65123
[14] J. H.Bramble and J. T.King, A robust finite element method for element nonhomogeneous Dirichlet problems in domains with curved boundaries, Math. Comput.63 (1994), 698-702.
[15] C.Varsakelis and Y.Marichal, Numerical approximation of elliptic interface problems via isoparametric finite element methods, Comput. Math. Appl.68 (2014), 1945-1962. · Zbl 1369.65150
[16] X. F.Fang, D. F.Han, and X. L.Hu, A second order isoparametric finite element method for elliptic interface problems, Appl. Math. J. Chin. Univ.28 (2013), 57-74. · Zbl 1289.65257
[17] A. B.Andreev and T. D.Todorov, Isoparametric finite element approximation of a Steklov eigenvalue problem, IMA J. Numer. Anal.24 (2004), 309-322. · Zbl 1069.65120
[18] P. K.Bhattacharyya and N.Nataraj, Isoparametric mixed finite element approximation of eigenvalues and eigenvectors of 4th order eigenvalue problems with variable coefficients, ESAIM Math. Model. Numer. Anal.36 (2002), 1-32. · Zbl 0993.35031
[19] M. P.Lebaud, Error estimate in an isoparametric finite element eigenvalue problem, Math. Comput.63 (1994), 19-40. · Zbl 0807.65110
[20] L. K.Li, A mixed isoparametric finite element approximation of stokes equations, Numer. Math. J. Chin. Univ.4 (1986), 334-353. · Zbl 0658.76032
[21] S. C.Brenner and L. R.Seott, The mathematical theory of finite element methods, Springer‐Verlag, Berlin, Germany, 1994. · Zbl 0804.65101
[22] I.Babuska and B.Szabo, On the rates of convergence of the finite element method, Int. J. Numer. Methods Eng.18 (1982), 323-341. · Zbl 0498.65050
[23] P. C.Hammer, O. J.Marlowe, and A. H.Stroud, Numerical integration over simplexes and cones, Math. Comput.10 (1956), 130-137. · Zbl 0070.35404
[24] S. S.Rao and S. N.Atluri, The finite element method in engineering, Pergamon, New York, NY, 1982. · Zbl 0472.73083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.