×

Optimal problems of the best proximity pair by proximal normal structure. (English) Zbl 07850789

Summary: Let \((A_1,A_2,A_3)\) be a triple of nonempty convex subsets of a metric space \(\Omega\). In this paper, we determine optimal problems of the best proximity pair by proximal normal structure between two sets \(A_1\) and \(A_2\) with the help of a third set \(A_3\) and we find some necessary and sufficient conditions for existence this optimal problems. Also, we provide an example to illustrate the convergence behavior of our proposed results.

MSC:

41A65 Abstract approximation theory (approximation in normed linear spaces and other abstract spaces)
41A52 Uniqueness of best approximation
46N10 Applications of functional analysis in optimization, convex analysis, mathematical programming, economics
Full Text: DOI

References:

[1] H. Aydi, On common fixed point theorems for (ψ, φ)-generalized f -weakly contractive mappings, Miskolc Mathematical Notes, 14 (1) (2013), 19-30. · Zbl 1299.54082
[2] H. Aydi, M. Abbas and C. Vetro, Common Fixed points for multi-valued generalized contractions on partial metric spaces, RACSAM, 108 (2014), 483-501. · Zbl 1433.54021
[3] I. Altun and A. Tasdemir, On best proximity points of in-terpolative proximal contractions, Quaestiones Math. (2020), doi.org/10.2989/16073606.2020.1785576. · Zbl 1477.54046 · doi:10.2989/16073606.2020.1785576
[4] L. Chen, “Common best proximity points theorems,”Journal of Management Research and Analysis, 39, (3) (2019) 289-294. · Zbl 1449.54056
[5] A. A. Eldred, W. A. Kirk and P. Veeramani, Proximinal nor-mal structure and relatively nonexpansive mappings, Studia Math., 171(3)(2005) 283-293. · Zbl 1078.47013
[6] A. A. Eldred and P. Veeramani, Existence and convergence of best proximity points,J. Math. Anal. Appl., 323(2006), 1001-1006. · Zbl 1105.54021
[7] M. Gabeleh, A characterization of proximal normal structure via proximal diametral sequences,J. Fixed Point Theory Appl. 19(4), (2017) 2909-2925. · Zbl 1493.47063
[8] M. R. Haddadi and V. Parvaneh, Global Optimal Approximate Solutions of Best Proximity Points, Filomat, 35(5) (2021), 1555-1564.
[9] H. Işık, V. Parvaneh, and M. R. Haddadi, “Strong and pure fixed point properties of mappings on normed spaces,” Mathematical Sci-ences, (2021) 15,305-309. · Zbl 1492.47057
[10] S.K. Jain, G. Meena, D. Singh, J.K. Maitra, Best proximity point results with their consequences and applications.J. Inequal. Appl. (2022), 2022, 73. · Zbl 1506.54019
[11] E. Karapinar, R. Agarwal, and H. Aydi, Interpolative Reich-Rus-Ciric contractions on metric spaces,Mathematics 6 (2018), 256, doi.org/10.3390/math6110256. · Zbl 1469.54127 · doi:10.3390/math6110256
[12] W. A. Kirk and N. Shahzad, Normal structure and orbital fixed point conditions,J. Math. Anal. Appl. 463(2), (2018) 461-476. · Zbl 1392.54032
[13] P. Kumam and C. Mongkolekeha, “Common best proximity points for proximity commuting mapping with Geraghty”s func-tions,”Carpathian Journal of Mathematics, 31, (3) (2015) 359-364. · Zbl 1389.54096
[14] D. O’REGAN, Equilibria for abstract economies in Hausdorff topo-logical vector spaces,Constructive Mathematical Analysis, 5(2), 2022, 54-59. · Zbl 1497.91171
[15] Raj V. Sankar ,P. Veeramani, Best proximity pair theorems for rela-tively nonexpansive mappings,Appl. Gen. Topol., 10(1)(2009)21-28. · Zbl 1213.47062
[16] S. Sadiq Basha, N. Shahzad, and R. Jeyaraj, “Common best proximity points: global optimization of multi-objective func-tions,”Applied Mathematics Letters, 24, (6)(2011) 883-886 · Zbl 1281.54018
[17] S. Sadiq Basha, Best proximity points: global optimal approximate solution,J. Global Optim., 49(1) (2011) 15-21. · Zbl 1208.90128
[18] S. Sadiq Basha, Best proximity points: optimal solutions,J. Optim. Theory Appl. 151 (2011), 210-216. · Zbl 1226.90135
[19] S. Sadiq Basha, N. Shahzad, K. Sethukumarasamy, Relative Continuity, Proximal Boundedness and Best Proximity Point Theorems,Numerical Functional Analysis and Optimization, 43 (4),(2022), 394-411. · Zbl 07530315
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.