×

Robust output-based controller design for enlarging the region of attraction of input saturated linear systems. (English) Zbl 07878796

Summary: The aim of this study was to design a constrained robust output feedback control strategy for stabilizing linear systems affected by uncertainties and output perturbations. The input is constrained by a saturation function. A classical Luenberger observer reconstructed the states from output observations. The state feedback control employed the estimated states given by the observer. This work proposed a Barrier Lyapunov Function (BLF) to manage the saturation problem in the control input. Moreover, an extended version of the attractive ellipsoid method (AEM) characterized the zone of convergence due the presence of perturbations in the output. A convex optimization procedure, formulated as a set of matrix inequalities, yielded the control parameters and the region of attraction for the close-loop system as well as a minimal ultimately bounded set for the system trajectories. Numerical simulations supported the theoretical results formulated in this study.
© 2019 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd

MSC:

93-XX Systems theory; control
Full Text: DOI

References:

[1] D. W.Kim, Further refinement on controller design for linear systems with input saturation, Automatica77 (2017), 14-17. https://doi.org/10.1016/j.automatica.2016.11.004 · Zbl 1355.93164 · doi:10.1016/j.automatica.2016.11.004
[2] X.Wang et al., A new high‐order adaptive robust control for constraint following of mechanical systems, Asian J. Control19 (2017), no. 5, 1672-1687. · Zbl 1386.93171
[3] D.Liu and A.Michel, Dynamical Systems with Saturation Nonlinearities: Analysis and design, Vol. 1993, Springer‐Verlag, London, (2007).
[4] J.Ang and D.McMillen, Physical constraints on biological integral control design for homeostasis and sensory adaptation, Biophys. J.104 (2013), no. 2, 505-515. https://doi.org/10.1016/j.bpj.2012.12.015 · doi:10.1016/j.bpj.2012.12.015
[5] M.Fischmann, J.Flores, and J. G.daSilva Jr, Dynamic controller design for synchronization of lur’e type systems subject to control saturation, IFAC‐PapersOnLine50 (2017), no. 1, 11853-11858. https://doi.org/10.1016/j.ifacol.2017.08.1364.20thIFACWorldCongress · doi:10.1016/j.ifacol.2017.08.1364.20thIFACWorldCongress
[6] H.Yang and J.Liu, Active vibration control for a flexible‐link manipulator with input constraint based on a disturbance observer, Asian J. Control21 (2019), no. 2, 847-855. · Zbl 1422.93122
[7] T.Hu, A. R.Teel, and L.Zaccarian, Stability and performance for saturated systems via quadratic and nonquadratic Lyapunov functions, IEEE Trans. Autom. Control51 (2006), no. 11, 1770-1786. https://doi.org/10.1109/TAC.2006.884942 · Zbl 1366.93439 · doi:10.1109/TAC.2006.884942
[8] S.Tarbouriech et al., Ultimate bounded stability and stabilization of linear systems interconnected with generalized saturated functions, Automatica47 (2011), no. 7, 1473-1481. https://doi.org/10.1016/j.automatica.2011.02.020 · Zbl 1220.93068 · doi:10.1016/j.automatica.2011.02.020
[9] Y.Peng and J.Liu, Boundary control for a flexible inverted pendulum system based on a pde model with input saturation, Asian J. Control20 (2018), no. 5, 2026-2033. https://doi.org/10.1002/asjc.1746 · Zbl 1407.93089 · doi:10.1002/asjc.1746
[10] H.Li, Z.Zuo, and Y.Wang, Dynamic output feedback control for systems subject to actuator saturation via event-triggered scheme, Asian J. Control20 (2018), 207-215. https://doi.org/10.1002/asjc.1662 · Zbl 1391.93144 · doi:10.1002/asjc.1662
[11] J.Wang, W.Song, S.Liu, and A.Dobaie, Robust model predictive control for linear discrete-time system with saturated inputs and randomly occurring uncertainties, Asian J. Control20 (2018), no. 1, 425-436. https://doi.org/10.1002/asjc.1565 · Zbl 1391.93080 · doi:10.1002/asjc.1565
[12] T.Hu and Z.Lin, Composite quadratic Lyapunov functions for constrained control systems, IEEE Trans. Autom. Control48 (2003), no. 3, 440-450. https://doi.org/10.1109/TAC.2003.809149 · Zbl 1364.93108 · doi:10.1109/TAC.2003.809149
[13] X.Xu, P.Tabuada, J. W.Grizzle, and A. D.Ames, Robustness of control barrier functions for safety critical control, IFAC‐PapersOnLine48 (2015), no. 27, 54-61. https://doi.org/10.1016/j.ifacol.2015.11.152 · doi:10.1016/j.ifacol.2015.11.152
[14] D. J.Li, J.Li, and S.Li, Adaptive control of nonlinear systems with full state constraints using integral barrier Lyapunov functionals, Neurocomputing186 (2016), 90-96. https://doi.org/10.1016/j.neucom.2015.12.075 · doi:10.1016/j.neucom.2015.12.075
[15] A.LAfflitto and K.Mohammadi, Robust observer‐based control of nonlinear dynamical systems with state constraints, J. Franklin Inst.354 (2017), no. 16, 7385-7409. https://doi.org/10.1016/j.jfranklin.2017.09.007 · Zbl 1373.93079 · doi:10.1016/j.jfranklin.2017.09.007
[16] Y.Li and Z.Lin, Design of saturation‐based switching anti‐windup gains for the enlargement of the domain of attraction, IEEE Trans. Autom. Control58 (2013), no. 7, 1810-1816. https://doi.org/10.1109/TAC.2012.2231532 · Zbl 1369.93250 · doi:10.1109/TAC.2012.2231532
[17] L.Edalati et al., Adaptive fuzzy dynamic surface control of nonlinear systems with input saturation and time‐varying output constraints, Mech. Syst. Sig. Process.100 (2018), 311-329. https://doi.org/10.1016/j.ymssp.2017.07.036 · doi:10.1016/j.ymssp.2017.07.036
[18] N.Baiomy and R.Kikuuwe, An amplitude‐ and rate‐saturated controller for linear plants, Asian J. Control (2018). https://doi.org/10.1002/asjc.1851 · Zbl 07872564 · doi:10.1002/asjc.1851
[19] S.Tarbouriech, I.Queinnec, and G.Garcia, Advanced strategies in control systems with input and output constraints, Anti‐windup Strategy for Systems Subject to Actuator and Sensor Saturations, Vol. 2007, Springer‐Verlag Berlin Heidelberg, 2007, pp. 173-206. · Zbl 1103.93011
[20] S.Tarbouriech, CPrieur, and JMGdaSilva, Stability analysis and stabilization of systems presenting nested saturations, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), Vol. 5, Nassau, Bahamas, 2004, pp. 5493-5498. https://doi.org/10.1109/CDC.2004.1429682 · doi:10.1109/CDC.2004.1429682
[21] Y. J.Liu and S.Tong, Barrier Lyapunov functions for Nussbaum gain adaptive control of full state constrained nonlinear systems, Automatica76 (2017), 143-152. https://doi.org/10.1016/j.automatica.2016.10.011 · Zbl 1352.93062 · doi:10.1016/j.automatica.2016.10.011
[22] K. P.Tee, S. S.Ge, and E. H.Tay, Barrier Lyapunov functions for the control of output‐constrained nonlinear systems, Automatica45 (2009), no. 4, 918-927. https://doi.org/10.1016/j.automatica.2008.11.017 · Zbl 1162.93346 · doi:10.1016/j.automatica.2008.11.017
[23] Z. L.Tang et al., Robust adaptive neural tracking control for a class of perturbed uncertain nonlinear systems with state constraints, IEEE Trans. Syst. Man Cybern. Syst. Hum.46 (2016), no. 12, 1618-1629. https://doi.org/10.1109/TSMC.2015.2508962 · doi:10.1109/TSMC.2015.2508962
[24] Y. J.Liu et al., Neural network control‐based adaptive learning design for nonlinear systems with full‐state constraints, IEEE Trans. Neural Netw. Learn. Syst.27 (2016), no. 7, 1562-1571. https://doi.org/10.1109/TNNLS.2015.2508926 · doi:10.1109/TNNLS.2015.2508926
[25] Y.Hu, G.Duan, and F.Tan, Control of lpv systems subject to state constraints and input saturation, Trans. Inst. Meas. Control.40 (2018), no. 14, 3985-3993. https://doi.org/10.1177/0142331217742964 · doi:10.1177/0142331217742964
[26] J.Zhang, Integral barrier lyapunov functions‐based neural control for strictfeedback nonlinear systems with multi‐constraint, Int. J. Control Autom. Syst.16 (2018), no. 4. https://doi.org/10.1007/s12555-017-0564-6 · doi:10.1007/s12555-017-0564-6
[27] A.Poznyak, A.Polyakov, and V.Azhmyakov, Attractive ellipsoids in robust control, Springer International Publishing, Switzerland, 2014. · Zbl 1314.93006
[28] M.Mera et al., Robust control for a class of continuous‐time dynamical systems with sample‐data outputs, 2009 6th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Toluca, Mexico, 2009, pp. 1-7.
[29] M.Mera, A.Polyakov, and W.Perruquetti, Finite‐time attractive ellipsoid method: Implicit Lyapunov function approach, Int. J. Control89 (2016), no. 6, 1079-1090. · Zbl 1338.93135
[30] A.Poznyak, V.Azhmyakov, and M.Mera, Practical output feedback stabilisation for a class of continuous‐time dynamic systems under sample‐data outputs, Int. J. Control.84 (2011), no. 8, 1408-1416. · Zbl 1230.93072
[31] E.Fridman, New Lyapunov‐Krasovskii functionals for stability of linear retarded and neutral type systems, Syst. Control Lett.43 (2001), 309-319. · Zbl 0974.93028
[32] H.Lens and J.Adamy, Observer based controller design for linear systems with input constraints, IFAC Proc. Vol.41 (2008), no. 2, 9916-9921. https://doi.org/20080706-5-KR-1001.01678
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.