×

Robust sub-optimality of linear-saturated control via quadratic zero-sum differential games. (English) Zbl 1496.93096

Summary: In this paper, we determine the approximation ratio of a linear-saturated control policy of a typical robust-stabilization problem. We consider a system, whose state integrates the discrepancy between the unknown but bounded disturbance and control. The control aims at keeping the state within a target set, whereas the disturbance aims at pushing the state outside of the target set by opposing the control action. The literature often solves this kind of problems via a linear-saturated control policy. We show how this policy is an approximation for the optimal control policy by reframing the problem in the context of quadratic zero-sum differential games. We prove that the considered approximation ratio is asymptotically bounded by 2, and it is upper bounded by 2 in the case of 1-dimensional system. In this last case, we also discuss how the approximation ratio may apparently change, when the system’s demand is subject to uncertainty. In conclusion, we compare the approximation ratio of the linear-saturated policy with the one of a family of control policies which generalize the bang-bang one.

MSC:

93D21 Adaptive or robust stabilization
49N70 Differential games and control
91A23 Differential games (aspects of game theory)

References:

[1] Saberi, A.; Lin, Z.; Teel, A., Control of linear systems with saturating actuators, IEEE Trans. Autom. Control, 41, 3, 368-377 (1996) · Zbl 0853.93046 · doi:10.1109/9.486638
[2] Tarbouriech, S.; Garcia, G.; Da Silva, Jg; Queinnec, I., Stability and Stabilization of Linear Systems with Saturating Actuators (2011), London: Springer, London · Zbl 1279.93004
[3] Benzaouia, A., Mesquine, F., Benhayoun, M.: Saturated control of linear systems. In: Kacprzyk, J. (ed.) Studies in Systems, Decision and Control, vol. 124. Springer, Cham (2018) · Zbl 1475.93003
[4] Hu, T.; Teel, Ar; Zaccarian, L., Stability and performance for saturated systems via quadratic and nonquadratic Lyapunov functions, IEEE Trans. Autom. Control, 51, 11, 1770-1786 (2006) · Zbl 1366.93439 · doi:10.1109/TAC.2006.884942
[5] Henrion, D.; Tarbouriech, S., LMI relaxations for robust stability of linear systems with saturating controls, Automatica, 35, 1599-1604 (1999) · Zbl 0948.93524 · doi:10.1016/S0005-1098(99)00060-6
[6] Benzaouia, A.; Tadeo, F.; Mesquine, F., The regulator problem for linear systems with saturation on the control and its increments or rate: an LMI approach, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 53, 12, 2681-2691 (2006) · Zbl 1374.93293 · doi:10.1109/TCSI.2006.883163
[7] Castelan, Eb; Tarbouriech, S.; Da Silva Jr, Jmg; Queinnec, I., L2-stabilization of continuous-time systems with saturating actuators, Int. J. Robust Nonlinear Control, 16, 935-944 (2006) · Zbl 1135.93028 · doi:10.1002/rnc.1118
[8] Fang, H.; Lin, Z.; Hu, T., Analysis of linear systems in the presence of actuator saturation and L2-disturbances, Automatica, 40, 7, 1229-1238 (2004) · Zbl 1051.93068 · doi:10.1016/j.automatica.2004.02.009
[9] Teel, Ar, Semi-global stabilizability of linear null controllable systems with input nonlinearities, IEEE Trans. Autom. Control, 40, 1, 96-100 (1995) · Zbl 0818.93062 · doi:10.1109/9.362894
[10] Lin, Z.; Mantri, R.; Saberi, A., Semi-global output regulation for linear systems subject to input saturation—a low and high gain design, Control Theory Adv. Technol., 10, 4, 2209-2232 (1995)
[11] Teel, Ar, Global stabilization and restricted tracking for multiple integrators with bounded controls, Syst. Control Lett., 18, 165-171 (1992) · Zbl 0752.93053 · doi:10.1016/0167-6911(92)90001-9
[12] Da Silva Jr, Jmg; Tarbouriech, S., Anti-windup design with guaranteed regions of stability: an LMI-based approach, IEEE Trans. Autom. Control, 50, 106-111 (2005) · Zbl 1365.93443 · doi:10.1109/TAC.2004.841128
[13] Cao, Yy; Lin, Z.; Ward, Dg, An antiwindup approach to enlarging domain of attraction for linear systems subject to actuator saturation, IEEE Trans. Autom. Control, 47, 1, 140-145 (2002) · Zbl 1364.93612 · doi:10.1109/9.981734
[14] Bemporad, A.; Morari, M.; Dua, V.; Pistikopoulos, En, The explicit linear quadratic regulator for constrained systems, Automatica, 38, 1, 3-20 (2002) · Zbl 0999.93018 · doi:10.1016/S0005-1098(01)00174-1
[15] Basar, T.; Olsder, Gj, Dynamic Noncooperative Game Theory (1995), London: Academic Press, London · Zbl 0828.90142
[16] Bauso, D.; Blanchini, F.; Pesenti, R., Robust control policies for multi-inventory systems with average flow constraints, Automatica, 42, 8, 1255-1266 (2006) · Zbl 1097.90002 · doi:10.1016/j.automatica.2005.12.006
[17] Bagagiolo, F.; Bauso, D., Objective function design for robust optimality of linear control under state-constraints and uncertainty, ESAIM Control Optim. Calc. Var., 17, 1, 155-177 (2011) · Zbl 1210.49027 · doi:10.1051/cocv/2009040
[18] Bertsimas, D.; Thiele, A., A robust optimization approach to inventory theory, Oper. Res., 54, 1, 150-168 (2006) · Zbl 1167.90314 · doi:10.1287/opre.1050.0238
[19] Elliot, R.J., Kalton, N.J.: The existence of value in differential games. Mem. Am. Math. Soc. 126. AMS, Providence, USA (1972) · Zbl 0262.90076
[20] Visintin, A., Differential Models of Hysteresis (1994), Berlin: Springer, Berlin · Zbl 0820.35004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.