×

Stabilization for stochastic nonlinear differential inclusion systems with time delay. (English) Zbl 1366.93440

Summary: In this paper, the stabilization problem for stochastic non-linear differential inclusion systems with time delay is discussed. First, the definition of the exponential stability in mean square for stochastic differential inclusion is presented. Second, under the framework of the convex hull Lyapunov function, a continuous feedback law is designed to make the closed-loop system exponentially stable in mean square. Finally, two numerical examples are presented to demonstrate the effectiveness of the proposed controller for the stabilization problem discussed in this paper.

MSC:

93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93C05 Linear systems in control theory
93C15 Control/observation systems governed by ordinary differential equations
Full Text: DOI

References:

[1] J. Aubin, A. Cellina, Differential Inclusions: Set-valued Maps and Viability Theory (Springer, New York, 1984) · Zbl 0538.34007 · doi:10.1007/978-3-642-69512-4
[2] S. Boyd, L. Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Ineqaulities in System and Control Theory (SIAM, Philadelphia, 1994) · Zbl 0816.93004 · doi:10.1137/1.9781611970777
[3] B. Brogliato, Some perspectives on the analysis and control of complementarity systems. IEEE Trans. Automa. Control 48, 918-935 (2003) · Zbl 1364.93356 · doi:10.1109/TAC.2003.812777
[4] X. Cai, L. Liu, W. Zhang, Saturated control design for linear differential inclusions subject to disturbance. Nonlinear Dyn. 58, 487-496 (2009) · Zbl 1183.93110 · doi:10.1007/s11071-009-9494-z
[5] X. Cai, Robust stabilisation for nonlinear differential inclusion systems subject to disturbances. Acta Automa. Sin. 36, 1327-1331 (2010) · doi:10.3724/SP.J.1004.2010.01327
[6] K. Deimling, Multivalued Differential Equations (De Gruyter Series in Nonlinear Analysis and Applications, Berlin, 1992) · Zbl 0760.34002
[7] A. Filippov, Differential Equations with Discontinuous Right-hand Side (Kluwer Academic Publishersm, Netherlands, 1988) · Zbl 0138.32204 · doi:10.1007/978-94-015-7793-9
[8] M. Forti, P. Nistri, Global convergence of neural networks with discontinuous neuron activations. IEEE Trans. Circuits-I 50, 1421-1435 (2003) · Zbl 1368.34024 · doi:10.1109/TCSI.2003.818614
[9] H. Gao, J. Lam, L. Xie, C. Wang, New approach to mixed \[H_22/H_{\infty }\]∞ filtering for polytopic discrete-time systems. IEEE Trans. Signal Proces. 53, 3183-3192 (2005) · Zbl 1370.93274 · doi:10.1109/TSP.2005.851116
[10] H. Gao, C. Wang, J. Wang, On \[H_{\infty }\]∞ performance analysis for continuous-time stochastic systems with polytopic uncertainties. Circuits Syst. Signal Process. 24, 415-429 (2005) · Zbl 1136.93334 · doi:10.1007/s00034-004-0915-4
[11] E. Gluskin, Structure, nonlinearity, and system theory. Int. J. Circiot. Theor. Appl. 43, 524-543 (2015) · doi:10.1002/cta.1960
[12] T. Hu, Nonlinear control design for linear differential inclusions via convex hull of quadratics. Automatica 43, 685-692 (2007) · Zbl 1131.93022 · doi:10.1016/j.automatica.2006.10.015
[13] T. Hu, Z. Lin, Properties of the composite quadratic Lyapunov functions. IEEE Trans. Autom. Control 49, 1162-1167 (2004) · Zbl 1365.93468 · doi:10.1109/TAC.2004.831132
[14] T. Hu, A. Teel, L. Zaccarian, Stability and performance for saturated systems via quadratic and nonquadratic Lyapunov functions. IEEE Trans. Autom. Control 51, 1770-1786 (2006) · Zbl 1366.93439 · doi:10.1109/TAC.2006.884942
[15] J. Huang, Z. Han, X. Cai, L. Liu, Control of time-delayed linear differential inclusions with stochastic disturbance. J. Frankl. Inst. 347, 1895-1906 (2010) · Zbl 1206.93104 · doi:10.1016/j.jfranklin.2010.10.008
[16] J. Huang, Z. Han, X. Cai, L. Liu, Robust stabilization of linear differential inclusions with affine uncertainty. Circuits Syst. Signal Process. 30, 1369-1382 (2011) · Zbl 1238.93093 · doi:10.1007/s00034-011-9268-y
[17] V. Krivan, Construction of population growth equations in the presence of viability constraints. J. Math. Biol. 29, 379-387 (1991) · Zbl 0721.92016 · doi:10.1007/BF00167158
[18] R. Leine, H. Nijmeijer, Dynamics and Bifurcations in Non-smooth Mechanical Systems (Springer, Berlin, 2004) · Zbl 1068.70003 · doi:10.1007/978-3-540-44398-8
[19] Y. Li, Z. Lin, Improvements to the linear differential inclusion approach to stability analysis of linear systems with saturated linear feedback. Automatica 49, 821-828 (2013) · Zbl 1267.93143 · doi:10.1016/j.automatica.2012.12.002
[20] H. Liu, S. Ding, H. Zhou, Stabilization of differential inclusion systems with Markovian jumping, in Proceedings of the 33rd Chinese Control Conference, Nanjing (2014)
[21] G. Smirnov, Introduction to the Theory of Differential Inclusions, Graduate Studies in Mathematics (SIAM, Philadelphia, 2002) · Zbl 0992.34001
[22] W. Sun, H. Gao, O. Kaynak, Vibration isolation for active suspensions with performance constraints and actuator saturation. IEEE-ASME Trans. Mechatron. 20, 675-683 (2015) · doi:10.1109/TMECH.2014.2319355
[23] W. Sun, Z. Zhao, H. Gao, Saturated adaptive robust control for active suspension systems. IEEE Trans. Ind. Electron. 60, 3889-3896 (2013) · doi:10.1109/TIE.2012.2206340
[24] Y. Sun, J. Cao, Z. Wang, Exponential synchronization of stochastic perturbed chaotic delayed neural networks. Neurocomputing 70, 2477-2485 (2007) · doi:10.1016/j.neucom.2006.09.006
[25] A. Wu, Z. Zeng, Exponential stabilization of memristive neural networks with time delays. IEEE Trans. Neural Netw. Learn. Syst. 23, 1919-1929 (2012) · Zbl 1244.28014 · doi:10.1109/TNNLS.2012.2219554
[26] J. Zhang, X. Zhao, J. Huang, Synchronization control of neural networks with state-dependent coefficient matrices, IEEE T Neur. Net. Lear. in press (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.