×

Limit theorems for \(p\)-domain functionals of stationary Gaussian fields. (English) Zbl 07927523

Summary: Fix an integer \(p \geq 1\) and refer to it as the number of growing domains. For each \(i \in \{1, \ldots, p \}\), fix a compact subset \(D_i \subseteq \mathbb{R}^{d_i}\) where \(d_1, \ldots, d_p \geq 1\). Let \(d = d_1 + \cdots + d_p\) be the total underlying dimension. Consider a continuous, stationary, centered Gaussian field \(B = (B_x )_{x \in \mathbb{R}^d}\) with unit variance. Finally, let \(\varphi : \mathbb{R} \to \mathbb{R}\) be a measurable function such that \(\mathbb{E} [\varphi (N)^2] < \infty\) for \(N \sim N(0, 1)\).
In this paper, we investigate central and non-central limit theorems as \(t_1, \ldots, t_p \to \infty\) for functionals of the form \[ Y(t_1, \ldots, t_p) : = \int_{t_1 D_1 \times \cdots \times t_p D_p} \varphi (B_x) dx. \] Firstly, we assume that the covariance function \(C\) of \(B\) is separable (that is, \(C = C_1 \otimes \ldots \otimes C_p\) with \(C_i : \mathbb{R}^{d_i} \to \mathbb{R})\), and thoroughly investigate under what condition \(Y(t_1, \ldots, t_p)\) satisfies a central or non-central limit theorem when the same holds for \(\int_{t_i D_i} \varphi (B_{x_i}^{(i)}) dx_i\) for at least one (resp. for all) \(i \in \{1, \ldots, p\}\), where \(B^{(i)}\) stands for a stationary, centered, Gaussian field on \(\mathbb{R}^{d_i}\) admitting \(C_i\) for covariance function. When \(\varphi\) is an Hermite polynomial, we also provide a quantitative version of the previous result, which improves some bounds from [31].
Secondly, we extend our study beyond the separable case, examining what can be inferred when the covariance function is either in the Gneiting class or is additively separable.

MSC:

60G60 Random fields
60G15 Gaussian processes
60J55 Local time and additive functionals
60F05 Central limit and other weak theorems

References:

[1] R. J. Adler and J. E. Taylor, Random fields and geometry, Springer Monographs in Mathematics, Springer, New York, 2007. MathSciNet: MR2319516 · Zbl 1149.60003
[2] T. Alodat and A. Olenko, Weak convergence of weighted additive functionals of long-range dependent fields, Theory Probab. Math. Statist. 97 (2018), 1-16. MathSciNet: MR3745995 · Zbl 1409.60082
[3] F. Bachoc, A. P. Peron, and E. Porcu, Multivariate Gaussian Random Fields over Generalized Product Spaces involving the Hypertorus, Theory Probab. Math. Statist. 107 (2022), 3-14. MathSciNet: MR4511141 · Zbl 07618870
[4] J. C. Breton, On the rate of convergence in non-central asymptotics of the Hermite variations of fractional Brownian sheet, Probab. Math. Statist. 31 (2011), no. 2, 301-311. MathSciNet: MR2853680 · Zbl 1260.60033
[5] J. C. Breton and I. Nourdin, Error bounds on the non-normal approximation of Hermite power variations of fractional Brownian motion, Electron. Commun. Probab. 13 (2008), no. 46, 482-493. MathSciNet: MR2447835 · Zbl 1189.60084
[6] P. Breuer and P. Major, Central limit theorems for nonlinear functionals of Gaussian fields, J. Multivariate Anal. 13 (1983), no. 3, 425-441. MathSciNet: MR716933 · Zbl 0518.60023
[7] G. Christakos, Random field models in earth sciences, Academic Press, 1992.
[8] P. J. Diggle and P. J. Ribeiro, Gaussian models for geostatistical data, pp. 46-78, Springer New York, New York, NY, 2007. · Zbl 1132.86002
[9] R. L. Dobrushin and P. Major, Non-central limit theorems for nonlinear functionals of Gaussian fields, Z. Wahrsch. Verw. Gebiete 50 (1979), no. 1, 27-52. MathSciNet: MR550122 · Zbl 0397.60034
[10] B. Galerne, Computation of the Perimeter of Measurable Sets via their Covariogram. Applications to Random Sets, Image Analysis & Stereology 30 (2011), no. 1, 39-51, 21 pages. MathSciNet: MR2816305 · Zbl 1228.60019
[11] T. Gneiting, Nonseparable, stationary covariance functions for space-time data, J. Amer. Statist. Assoc. 97 (2002), no. 458, 590-600. MathSciNet: MR1941475 · Zbl 1073.62593
[12] D. Gorbachev and S. Tikhonov, Doubling condition at the origin for non-negative positive definite functions, Proc. Amer. Math. Soc. 147 (2019), 609-618. MathSciNet: MR3894899 · Zbl 1412.42024
[13] N. Leonenko, Limit theorems for random fields with singular spectrum, Mathematics and its Applications, vol. 465, Kluwer Academic Publishers, Dordrecht, 1999. MathSciNet: MR1687092 · Zbl 0963.60048
[14] N. Leonenko and A. Olenko, Tauberian and Abelian theorems for long-range dependent random fields, Methodol. Comput. Appl. Probab. 15 (2013), no. 4, 715-742. MathSciNet: MR3117624 · Zbl 1307.60068
[15] N. Leonenko and A. Olenko, Sojourn measures of Student and Fisher-Snedecor random fields, Bernoulli 20 (2014), no. 3, 1454-1483. MathSciNet: MR3217450 · Zbl 1304.60058
[16] N. Leonenko and M. D. Ruiz-Medina, Sojourn functionals for spatiotemporal Gaussian random fields with long memory, J. Appl. Probab. 60 (2023), no. 1, 148-165. MathSciNet: MR4546115 · Zbl 1515.60158
[17] L. Maini. Asymptotic covariances for functionals of weakly stationary random fields. Stochastic Processes and their Applications, 170:104297, 2024. MathSciNet: MR4689941
[18] L. Maini and I. Nourdin. Spectral central limit theorem for additive functionals of isotropic and stationary Gaussian fields. The Annals of Probability, 52(2):737 - 763, 2024. MathSciNet: MR4718405
[19] P. Major, Multiple Wiener-Itô integrals, Lecture Notes in Mathematics, vol. 849, Springer, Berlin, 1981, With applications to limit theorems. MathSciNet: MR611334 · Zbl 0451.60002
[20] D. Marinucci, M. Rossi, and A. Vidotto, Non-universal fluctuations of the empirical measure for isotropic stationary fields on \(\mathbb{S}^2 \times \mathbb{R} \), The Annals of Applied Probability 31 (2021), no. 5, 2311 - 2349. MathSciNet: MR4332698 · Zbl 1479.60103
[21] D. Marinucci, M. Rossi, and A. Vidotto, Fluctuations of level curves for time-dependent spherical random fields, 2022.
[22] I. Nourdin and G. Peccati, Stein’s method on Wiener chaos, Probability Theory and Related Fields 145 (2009), no. 1, 75-118. MathSciNet: MR2520122 · Zbl 1175.60053
[23] I. Nourdin and G. Peccati, Normal approximations with Malliavin calculus: From Stein’s method to universality, Cambridge Tracts in Mathematics, Cambridge University Press, 2012. MathSciNet: MR2962301 · Zbl 1266.60001
[24] I. Nourdin, G. Peccati, and M. Podolskij. Quantitative Breuer-Major theorems. Stochastic Processes and their Applications, 121(4):793-812, 2011. MathSciNet: MR2770907 · Zbl 1225.60045
[25] D. Nualart, The Malliavin calculus and related topics, Probability and Its Applications, Springer Berlin Heidelberg, 2006. MathSciNet: MR2200233 · Zbl 1099.60003
[26] D. Nualart and G. Peccati, Central limit theorems for sequences of multiple stochastic integrals, The Annals of Probability 33 (2005), no. 1, 177 - 193. MathSciNet: MR2118863 · Zbl 1097.60007
[27] D. Nualart and G. Zheng, Oscillatory Breuer-Major theorem with application to the random corrector problem, Asymptotic Analysis (2019), 281-300. MathSciNet: MR4159029 · Zbl 1472.60065
[28] B. Øksendal and T. Zhang, Multiparameter Fractional Brownian Motion And QuasiLinear Stochastic Partial Differential Equations, Stochastics An International Journal of Probability and Stochastic Processes 71 (2001), 141-163. MathSciNet: MR1922562 · Zbl 0986.60056
[29] M. S. Pakkanen and A. Réveillac, Functional limit theorems for generalized variations of the fractional Brownian sheet, Bernoulli 22 (2016), no. 3, 1671-1708. MathSciNet: MR3474829 · Zbl 1338.60099
[30] V. Pilipauskaitė and D. Surgailis, Scaling transition for nonlinear random fields with long-range dependence, Stochastic Process. Appl. 127 (2017), no. 8, 2751-2779. MathSciNet: MR3660890 · Zbl 1373.60089
[31] A. Reveillac, M. Stauch, and C. A. Tudor, Hermite variations of the fractional Brownian sheet, Stochastics and Dynamics 12 (2012), no. 03, 21 pages. MathSciNet: MR2926578 · Zbl 1263.60035
[32] M. Rosenblatt, Independence and dependence, Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. II, Univ. California Press, Berkeley-Los Angeles, Calif., 1960, pp. 431-443. MathSciNet: MR133863 · Zbl 0105.11802
[33] X. Song and Y. Wang, Quasi-Monte Carlo simulation of Brownian sheet with application to option pricing, Statistical Theory and Related Fields 1 (2017), no. 1, 82-91. · Zbl 07660531
[34] M. S. Taqqu, Weak convergence to fractional Brownian motion and to the Rosenblatt process, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 31 (1975), no. 4, 287-302. MathSciNet: MR0400329 · Zbl 0303.60033
[35] M. S. Taqqu, Convergence of integrated processes of arbitrary Hermite rank, Z. Wahrsch. Verw. Gebiete 50 (1979), no. 1, 53-83. MathSciNet: MR550123 · Zbl 0397.60028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.