×

Non-intersectivity of paperfolding dragon curves and of curves generated by automatic sequences. (English) Zbl 1448.11063

In this paper, the authors discuss the intersectivity of dragon curves obtained by unfolding a regularly folded strip of paper at an angle different from 90 degrees. They survey the (non-)intersectivity of curves associated with sequences taking their values in a finite set, in particular in the case of morphic or automatic sequences. They list papers about fractal curves, plane-filling curves, self-affine curves, or tilings, curves obtained by drawing sums of exponentials. They also present a result from the unpublished thesis of R. Albers (Bremen): The paperfolding curve is intersective if the unfolding angle is strictly between 90 and 95.126 degrees.

MSC:

11B85 Automata sequences
00A08 Recreational mathematics
68R15 Combinatorics on words

Software:

OEIS

References:

[1] R. Albers, Papierfalten, Doctoral thesis, Bremen University, 2006. Available at http://www. math.uni-bremen.de/didaktik/ma/ralbers/Publikationen/Dissertation/index.html
[2] J.-P. Allouche, J. Shallit, The ubiquitous Prouhet-Thue-Morse sequence, in Sequences and their Applications (Singapore, 1998), Springer Ser. Discrete Math. Theor. Comput. Sci., Springer, 1999, pp. 1-16. · Zbl 1005.11005
[3] J.-P. Allouche, J. Shallit, Automatic Sequences. Theory, Applications, Generalizations, Cambridge University Press, 2003. INTEGERS: 18A (2018)10 · Zbl 1086.11015
[4] J.-P. Allouche, G. Skordev, Von Koch and Thue-Morse revisited, Fractals 15 (2007), 405-409. · Zbl 1151.28007
[5] M. V. Berry, J. Goldberg, Renormalisation of curlicues, Nonlinearity 1 (1988), 1-26. · Zbl 0662.10029
[6] M. Cantrell, J. Palagallo, Self-intersection points of generalized Koch curves, Fractals 19 (2011), 213-220. · Zbl 1222.28011
[7] F. Chamizo, D. Raboso, Van der Corput method and optical illusions, Indag. Math. (N.S.) 26 (2015), 723-735. · Zbl 1334.78005
[8] J. Coquet, A summation formula related to the binary digits, Invent. Math. 73 (1983), 107-115. · Zbl 0528.10006
[9] R. B. Darst, J. A. Palagallo, T. E. Price, Curious Curves, World Scientific, 2010. · Zbl 1198.28008
[10] C. Davis, D. Knuth, Number representations and dragon curves-1, J. Recreational Mathematics 3 (1970), 66-81. · Zbl 1473.11067
[11] C. Davis, D. Knuth, Number representations and dragon curves-2, J. Recreational Mathematics 3 (1970), 133-149. · Zbl 1473.11066
[12] F. M. Dekking, Recurrent sets, Adv. Math. 44 (1982), 78-104. · Zbl 0495.51017
[13] F. M. Dekking, Replicating superfigures and endomorphisms of free groups, J. Comb. Theory, Ser. A 32 (1982), 315-320. · Zbl 0492.05019
[14] F. M. Dekking, Paperfolding morphisms, planefilling curves, and fractal tiles, Theoret. Comput. Sci. 414 (2012), 20-37. · Zbl 1243.68231
[15] F. M. Dekking, M. Mend‘es France, Uniform distribution modulo one: a geometrical viewpoint, J. Reine Angew. Math. 329 (1981), 143-153. · Zbl 0459.10025
[16] F. M. Dekking, M. Mend‘es France, A. van der Poorten, Folds!, Math. Intelligencer 4 (1982), 130-138, 173-181, 190-195. · Zbl 0493.10001
[17] J.-M. Deshouillers, Geometric aspect of Weyl sums, in Elementary and Analytic Theory of Numbers (Warsaw, 1982), Banach Center Publ., 17, PWN, Warsaw, 1985, pp. 75-82. · Zbl 0616.10031
[18] N. Pytheas Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, Lecture Notes in Mathematics 1794, Springer-Verlag, 2002. · Zbl 1014.11015
[19] F. von Haeseler, Automatic Sequences, de Gruyter Expositions in Mathematics 36, de Gruyter, 2003. · Zbl 1057.11015
[20] T. Kamae, A characterization of self-affine functions, Japan J. Appl. Math. 3 (1986), 271– 280. · Zbl 0646.28005
[21] T. Keleti, When is the modified von Koch snowflake non-self-intersecting?, Fractals 14 (2006), 245-249.
[22] T. Keleti, E. Paquette, The trouble with von Koch curves built from n-gons, Amer. Math. Monthly 117 (2010), 124-137. · Zbl 1202.28011
[23] D. Knuth, Selected Papers on Fun and Games, CSLI Publications, 2011, pp. 571-614. · Zbl 1237.00034
[24] N. Kˆono, On self-affine functions, Japan J. Appl. Math. 3 (1986), 259-269. · Zbl 0646.28004
[25] S. Konstantinidis (ed.), N. Moreira (ed.), R. Reis (ed.), J. Shallit (ed.), The role of Theory in Computer Science. Essays dedicated to Janusz Brzozowski, World Scientific, 2017. INTEGERS: 18A (2018)11 · Zbl 1370.68007
[26] D. H. Lehmer, Incomplete Gauss sums, Mathematika 23 (1976), 125-135. · Zbl 0346.10020
[27] D. H. Lehmer, E. Lehmer, Picturesque exponential sums. I, Amer. Math. Monthly 86 (1979), 725-733. · Zbl 0433.10024
[28] D. H. Lehmer, E. Lehmer, Picturesque exponential sums. II, J. Reine Angew. Math. 318 (1980), 1-19. · Zbl 0433.10025
[29] J. H. Loxton, Captain Cook and the Loch Ness monster, James Cook Mathematical Notes 3 (1981), 3060-3064 (available at http://www.maths.ed.ac.uk/cook/iss_no27.PDF).
[30] J. H. Loxton, The graphs of exponential sums, Mathematika 30 (1983), 153-163. · Zbl 0517.10040
[31] J. Ma, J. Holdener, When Thue-Morse meets Koch, Fractals 13 (2005), 191-206. · Zbl 1110.28007
[32] B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman and Co., 1982. · Zbl 0504.28001
[33] M. Mend‘es France, The inhomogeneous Ising chain and paperfolding, in Number Theory and Physics (Les Houches, 1989), Springer Proc. Phys. 47, Springer, 1990, pp. 195-202. · Zbl 0731.11015
[34] M. Mend‘es France, J. Shallit, Wire bending, J. Combin. Theory Ser. A 50 (1989), 1-23. · Zbl 0663.10056
[35] M. Mend‘es France, G. Tenenbaum, Dimension des courbes planes, papiers pli´es et suites de Rudin-Shapiro, Bull. Soc. Math. France 109 (1981), 207-215. · Zbl 0468.10033
[36] A. Monnerot-Dumaine, The Fibonacci word fractal, Peprint, HAL, 2009, available at https: //hal.archives-ouvertes.fr/hal-00367972.
[37] On-Line Encyclopedia of Integer Sequences, founded by N. J. A. Sloane. Available at http: //oeis.org. · Zbl 1494.68308
[38] H.-O. Peitgen, A. Rodenhausen, G. Skordev, Self-affine curves and sequential machines, Real Anal. Exchange 22 (1996/97), 446-491. · Zbl 0937.68072
[39] H.-O. Peitgen, A. Rodenhausen, G. Skordev, Self-similar functions generated by cellular automata, Fractals 6 (1998), 371-394. · Zbl 0990.37008
[40] J. L. Ram´ırez, G. N. Rubiano, Generaci´on de curvas fractales a partir de homomorfismos entre lenguajes [con MathematicaR], Rev. Integr. Temas Mat. 30 (2012), 129-150. · Zbl 1293.68211
[41] J. L. Ram´ırez, G. N. Rubiano, On the k-Fibonacci words, Acta Univ. Sapientiae, Inform. 5 (2013), 212-226. · Zbl 1343.11023
[42] J. L. Ram´ırez, G. N. Rubiano, Biperiodic Fibonacci word and its fractal curve, Acta Polytech. 55 (2015), 50-58.
[43] J. L. Ram´ırez, G. N. Rubiano, R. De Castro, A generalization of the Fibonacci word fractal and the Fibonacci snowflake, Theoret. Comput. Sci. 528 (2014), 40-56. · Zbl 1286.68375
[44] A. Rodenhausen, Planefilling curves and sequential functions, Peprint, Inst. f¨ur Dynamische Systeme, Bremen, 1995.
[45] O. Salon, Quelles tuiles ! (Pavages ap´eriodiques du plan et automates bidimensionnels), J. Th´eorie Nombres, Bordeaux 1 (1989), 1-26. · Zbl 0726.11020
[46] Ya G. Sina˘ı, A limit theorem for trigonometric sums: theory of curlicues, (in Russian), Uspekhi Mat. Nauk 63 (2008), 31-38; translated in Russian Math. Surveys 63 (2008), 1023– 1029. INTEGERS: 18A (2018)12 · Zbl 1172.37005
[47] R. Siromoney, K. G. Subramanian, Space-filling curves and infinite graphs in Graphgrammars and their Application to Computer Science, 2nd int. Workshop, Haus Ohrbeck/Ger. 1982, Lect. Notes Comput. Sci. 153 (1983), pp. 380-391. · Zbl 0519.68068
[48] S. Tabachnikov, Dragon curves revisited, Math. Intelligencer 36 (2014), 13-17. · Zbl 1295.28013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.