×

On the binary digits of \(n\) and \(n^2\). (English) Zbl 1505.11020

Let \(s(n)\) denote the sum of digits in the binary expansion of the integer \(n\). K. G. Hare et al. [Int. J. Number Theory 7, No. 7, 1737–1752 (2011; Zbl 1270.11008)] studied the number of odd integers such that \(s(n) = s(n^2 ) = k\), for a given integer \(k\ge 1\). They settled all cases with the exceptions of \(k\in\{9, 10, 11, 14, 15\}\). The main motivation to consider this kind of question comes from a work of M. Madritsch and T. Stoll [Acta Math. Hung. 143, No. 1, 192–200 (2014; Zbl 1333.11010)] who showed that \((s(n^2 )/s(n))_{n\ge 1}\) is dense in \(\mathbb{R}^+\).
In this paper, the authors show that there is only a finite number of solutions for \(k\in\{9, 10, 11\}\) and comment on the difficulties to settle the two remaining cases \(k\in\{14, 15\}\) (where they conjecture that the number of odd integers \(n\) with \(s(n) = s(n^2 ) = k\) is also finite).
A related problem is to study the set \(E_4\) of solutions of \(s(n^2 ) = 4\) for odd integers. M. A. Bennett et al. [Math. Proc. Camb. Philos. Soc. 153, No. 3, 525–540 (2012; Zbl 1291.11016)] proved that there are only finitely many solutions and conjectured that \(E_4=\{13, 15, 47, 111\}\). In this paper, the authors provide an algorithm to find all solutions with a fixed sum of digits value \(\lambda\). Supporting Bennet et al. conjecture, they show that \(\cup_{\lambda\le 17} E_{4,\lambda}=\{13, 15, 47, 111\}\) where \(E_{k,\lambda}=\{n\mid s(n^2 ) =k,\ s(n)=\lambda\}\). They obtain as well related results for \(s(n^2 ) = 5\).

MSC:

11A63 Radix representation; digital problems

References:

[1] Bassily, N. L.; Kátai, I., Distribution of the values of q-additive functions on polynomial sequences, Acta Math. Hung., 68, 4, 353-361 (1995), (English) · Zbl 0832.11035
[2] Bennett, M. A., The polynomial-exponential equation \(1 + 2^a + 6^b = y^q\), Period. Math. Hung., 75, 2, 387-397 (2017) · Zbl 1399.11098
[3] Bennett, M. A.; Bugeaud, Y., Perfect powers with three digits, Mathematika, 60, 1, 66-84 (2014) · Zbl 1372.11009
[4] Bennett, M. A.; Bugeaud, Y.; Mignotte, M., Perfect powers with few binary digits and related Diophantine problems, ii, Math. Proc. Camb. Philos. Soc., 153, 3, 525-540 (2012) · Zbl 1291.11016
[5] Bérczes, A.; Hajdu, L.; Miyazaki, T.; Pink, I., On the Diophantine equation \(1 + x^a + z^b = y^n\), J. Comb. Number Theory, 8, 2, 145-154 (2016) · Zbl 1419.11057
[6] Corvaja, P.; Zannier, U., Finiteness of odd perfect powers with four nonzero binary digits, Ann. Inst. Fourier, 63, 2, 715-731 (2013), (English) · Zbl 1294.11117
[7] Hajdu, L.; Pink, I., On the Diophantine equation \(1 + 2^a + x^b = y^n\), J. Number Theory, 143, 1-13 (2014) · Zbl 1353.11060
[8] Hare, K. G.; Laishram, S.; Stoll, T., Stolarsky’s conjecture and the sum of digits of polynomial values, Proc. Am. Math. Soc., 139, 1, 39-49 (2011), (English) · Zbl 1233.11007
[9] Hare, K. G.; Laishram, S.; Stoll, T., The sum of digits of n and \(n^2\), Int. J. Number Theory, 7, 7, 1737-1752 (2011) · Zbl 1270.11008
[10] Kaneko, H.; Stoll, T., Products of integers with few binary digits, Unif. Distrib. Theory, 17, 1, 11-28 (2022) · Zbl 1502.11011
[11] Lindström, B., On the binary digits of a power, J. Number Theory, 65, 2, 321-324 (1997) · Zbl 0957.11006
[12] Luca, F., The Diophantine equation \(x^2 = p^a \pm p^b + 1\), Acta Arith., 112, 1, 87-101 (2004) · Zbl 1067.11016
[13] Madritsch, M.; Stoll, T., On simultaneous digital expansions of polynomial values, Acta Math. Hung., 143, 1, 192-200 (2014), (English) · Zbl 1333.11010
[14] Mei, S.-Y., The sum of digits of polynomial values, Integers, 15, Article A32 pp. (2015) · Zbl 1373.11005
[15] Melfi, G., On simultaneous binary expansions of n and \(n^2\), J. Number Theory, 111, 2, 248-256 (2005) · Zbl 1134.11303
[16] Peter, M., The summatory function of the sum-of-digits function on polynomial sequences, Acta Arith., 104, 1, 85-96 (2002), (English) · Zbl 1027.11070
[17] Saunders, J. C., Sums of digits in q-ary expansions, Int. J. Number Theory, 11, 2, 593-611 (2015) · Zbl 1369.11005
[18] Stolarsky, K. B., The binary digits of a power, Proc. Am. Math. Soc., 71, 1-5 (1978), (English) · Zbl 0391.10011
[19] Szalay, L., The equations \(2^n \pm 2^m \pm 2^l = z^2\), Indag. Math., 13, 1, 131-142 (2002) · Zbl 1014.11022
[20] Szalay, L., Computational algorithm for solving the Diophantine equations \(2^n \pm \alpha \cdot 2^m + \alpha^2 = x^2\), Houst. J. Math., 46, 2, 295-306 (2020) · Zbl 1453.11170
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.