×

Moment estimate and existence for the solution of neutral stochastic functional differential equation. (English) Zbl 1492.60160

Summary: In this paper, the existence and uniqueness for the global solution of neutral stochastic functional differential equation is investigated under the locally Lipschitz condition and the contractive condition. The implicit iterative methodology and the Lyapunov-Razumikhin theorem are used. The stability analysis for such equations is also applied. One numerical example is provided to illustrate the effectiveness of the theoretical results obtained.

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60H20 Stochastic integral equations
37H05 General theory of random and stochastic dynamical systems
37H20 Bifurcation theory for random and stochastic dynamical systems
Full Text: DOI

References:

[1] H. B. Chen, The existence and uniqueness for the solution of neutral stochastic func-tional differential equations with infinite delay, J. Math. Res. Exposit. 30 (2010), no. 4, 589-598. · Zbl 1240.34395
[2] H. Chen and C. Yuan, On the asymptotic behavior for neutral stochastic differential delay equations, IEEE Trans. Automat. Control 64 (2019), no. 4, 1671-1678. · Zbl 1482.34170
[3] C. Fei, W. Fei, X. Mao, D. Xia, and L. Yan, Stabilization of highly nonlinear hybrid systems by feedback control based on discrete-time state observations, IEEE Trans. Au-tomat. Control 65 (2020), no. 7, 2899-2912. · Zbl 1533.93595
[4] Z. Feng, L. Ye, Z. Xiang, and X. Xie, Controllability and observability of fractional-order singular linear systems with impulese, J. Nanchang Univ. (Nature Science) 45 (2021), no. 5, 416-424. https://doi.org/10.13764/j.cnki.ncdl.2021.05.003 · doi:10.13764/j.cnki.ncdl.2021.05.003
[5] A. Friedman, Stochastic differential equations and applications, in Stochastic differential equations, 75-148, C.I.M.E. Summer Sch., 77, Springer, Heidelberg, 2010. https://doi. org/10.1007/978-3-642-11079-5_2 · doi:10.1007/978-3-642-11079-5_2
[6] D. J. Higham, X. Mao, and C. Yuan, Almost sure and moment exponential stability in the numerical simulation of stochastic differential equations, SIAM J. Numer. Anal. 45 (2007), no. 2, 592-609. https://doi.org/10.1137/060658138 · Zbl 1144.65005 · doi:10.1137/060658138
[7] L. Hu, X. Mao, and L. Zhang, Robust stability and boundedness of nonlinear hybrid stochastic differential delay equations, IEEE Trans. Automat. Control 58 (2013), no. 9, 2319-2332. https://doi.org/10.1109/TAC.2013.2256014 · Zbl 1369.93693 · doi:10.1109/TAC.2013.2256014
[8] S. Janković, J. Randjelović, and M. Jovanović, Razumikhin-type exponential stability criteria of neutral stochastic functional differential equations, J. Math. Anal. Appl. 355 (2009), no. 2, 811-820. https://doi.org/10.1016/j.jmaa.2009.02.011 · Zbl 1166.60040 · doi:10.1016/j.jmaa.2009.02.011
[9] Y. Ji, Q. Song, and C. Yuan, Neutral stochastic differential delay equations with locally monotone coefficients, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 24 (2017), no. 3, 195-217. · Zbl 1365.34138
[10] X. Li and X. Fu, Stability analysis of stochastic functional differential equations with infinite delay and its application to recurrent neural networks, J. Comput. Appl. Math. 234 (2010), no. 2, 407-417. https://doi.org/10.1016/j.cam.2009.12.033 · Zbl 1193.34168 · doi:10.1016/j.cam.2009.12.033
[11] X. Li and X. Mao, Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation, Discrete Contin. Dyn. Syst. 24 (2009), no. 2, 523-545. https://doi.org/10.3934/dcds.2009.24.523 · Zbl 1161.92048 · doi:10.3934/dcds.2009.24.523
[12] K. Liu, Uniform stability of autonomous linear stochastic functional differential equa-tions in infinite dimensions, Stoch. Process. Appl. 115 (2005), no. 7, 1131-1165. https://doi.org/10.1016/j.spa.2005.02.006 · Zbl 1075.60078 · doi:10.1016/j.spa.2005.02.006
[13] Q. Luo, X. Mao, and Y. Shen, New criteria on exponential stability of neutral stochastic differential delay equations, Syst. Control Lett. 55 (2006), no. 10, 826-834. https: //doi.org/10.1016/j.sysconle.2006.04.005 · Zbl 1100.93048 · doi:10.1016/j.sysconle.2006.04.005
[14] X. Mao, Stochastic Differential Equations and Applications, Horwood, Publishing, Chichester, Englang, 1997. · Zbl 0884.60052
[15] J. Randjelović and S. Janković, On the pth moment exponential stability criteria of neutral stochastic functional differential equations, J. Math. Anal. Appl. 326 (2007), no. 1, 266-280. https://doi.org/10.1016/j.jmaa.2006.02.030 · Zbl 1115.60065 · doi:10.1016/j.jmaa.2006.02.030
[16] Y. Ren, S. Lu, and N. Xia, Remarks on the existence and uniqueness of the solutions to stochastic functional differential equations with infinite delay, J. Comput. Appl. Math. 220 (2008), no. 1-2, 364-372. https://doi.org/10.1016/j.cam.2007.08.022 · Zbl 1152.34388 · doi:10.1016/j.cam.2007.08.022
[17] Y. Ren and N. Xia, Existence, uniqueness and stability of the solutions to neutral sto-chastic functional differential equations with infinite delay, Appl. Math. Comput. 210 (2009), no. 1, 72-79. https://doi.org/10.1016/j.amc.2008.11.009 · Zbl 1167.34389 · doi:10.1016/j.amc.2008.11.009
[18] M. Shen, C. Fei, W. Fei, and X. Mao, Boundedness and stability of highly nonlinear hybrid neutral stochastic systems with multiple delays, Sci. China Inf. Sci. 62 (2019), no. 10, 202205. https://doi.org/10.1007/s11432-018-9755-7 · doi:10.1007/s11432-018-9755-7
[19] Y. Shen, Q. Luo, and X. Mao, The improved LaSalle-type theorems for stochastic functional differential equations, J. Math. Anal. Appl. 318 (2006), no. 1, 134-154. https://doi.org/10.1016/j.jmaa.2005.05.026 · Zbl 1090.60059 · doi:10.1016/j.jmaa.2005.05.026
[20] L. Wan and Q. Zhou, Stochastic Lotka-Volterra model with infinite delay, Statist. Probab. Lett. 79 (2009), no. 5, 698-706. https://doi.org/10.1016/j.spl.2008.10.016 · Zbl 1159.92321 · doi:10.1016/j.spl.2008.10.016
[21] F. Wang and K. Wang, The existence and uniqueness of the solution for stochastic functional differential equations with infinite delay, J. Math. Anal. Appl. 331 (2007), no. 1, 516-531. https://doi.org/10.1016/j.jmaa.2006.09.020 · Zbl 1121.60064 · doi:10.1016/j.jmaa.2006.09.020
[22] F. Wu, S. Hu, and C. Huang, Robustness of general decay stability of nonlinear neutral stochastic functional differential equations with infinite delay, Syst. Control Lett. 59 (2010), no. 3-4, 195-202. https://doi.org/10.1016/j.sysconle.2010.01.004 · Zbl 1223.93096 · doi:10.1016/j.sysconle.2010.01.004
[23] F. Wu and X. Mao, Numerical solutions of neutral stochastic functional differential equations, SIAM J. Numer. Anal. 46 (2008), no. 4, 1821-1841. https://doi.org/10. 1137/070697021 · Zbl 1173.65004 · doi:10.1137/070697021
[24] D. Xu, B. Li, S. Long, and L. Teng, Moment estimate and existence for solutions of stochastic functional differential equations, Nonlinear Anal. 108 (2014), 128-143. https://doi.org/10.1016/j.na.2014.05.004 · Zbl 1304.34134 · doi:10.1016/j.na.2014.05.004
[25] D. Xu, X. Wang, and Z. Yang, Further results on existence-uniqueness for stochastic functional differential equations, Sci. China Math. 56 (2013), no. 6, 1169-1180. https: //doi.org/10.1007/s11425-012-4553-1 · Zbl 1280.34081 · doi:10.1007/s11425-012-4553-1
[26] Z. Yang, D. Xu, and L. Xiang, Exponential p-stability of impulsive stochastic differential equations with delays, Phys. Lett. A 359 (2006), no. 2, 129-137. https://doi.org/10. 1016/j.physleta.2006.05.090 · Zbl 1236.60061 · doi:10.1016/j.physleta.2006.05.090
[27] P. Yu, Analysis of stationary periodic stable solutions for a class of nonlinear systems, J. Nanchang Univ. (Nature Science) 44 (2020), no. 6, 529-533. https://doi.org/10. 13764/j.cnki.ncdl.2020.06.004 · Zbl 1488.35043 · doi:10.13764/j.cnki.ncdl.2020.06.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.