×

Radial basis function-based stochastic natural frequencies analysis of functionally graded plates. (English) Zbl 07342692

Summary: This paper deals with portraying the stochastic natural frequencies of cantilever plates made up of functionally graded materials (FGMs) by employing the radial basis function (RBF)-based finite element (FE) approach. The material modeling of FGM plates is carried out by employing three different distribution laws, namely power law, sigmoid law, and exponential law. A generalized algorithm is developed for uncertainty quantification of natural frequencies of the FGM structures due to stochastic variation in the material properties and temperature. The deterministic FE code is validated with the previous literature, whereas convergence study is carried out in between stochastic results obtained from full scale direct Monte Carlo Simulation (MCS) and MCS results obtained from RBF surrogate model of different sample sizes. The percentage of error present in the RBF model is also determined. The influence of crucial parameters such as distribution law, degree of stochasticity, power law index and temperature are determined for natural frequencies analysis of FGMs plates. The results illustrate the input parameters considered in the present study have significant effects on the first three stochastic natural frequencies of cantilever FGM plates.

MSC:

74-XX Mechanics of deformable solids
80-XX Classical thermodynamics, heat transfer
Full Text: DOI

References:

[1] Agarwal, H., Renaud, J. E., Preston, E. L. and Padmanabhan, D. [2004] “ Uncertainty quantification using evidence theory in multidisciplinary design optimization,” Reliab. Eng. Syst. Saf.85(1-3), 281-294.
[2] Arefi, M., Bidgoli, E. M. R., Dimitri, R. and Tornabene, F. [2018] “ Free vibrations of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets,” Aerosp. Sci. Technol.81, 108-117.
[3] Bafekrpour, E., Yang, C., Simon, G. P., Abvabi, A., Khoshmanesh, K. and Fox, B. L. [2014] “ A study on mechanical behavior of functionally-graded carbon nanotube-reinforced nanocomposites,” Int. J. Comput. Methods11(1), 1344003. · Zbl 1359.74020
[4] Baferani, A. H., Saidi, A. R. and Ehteshami, H. [2011] “ Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation,” Compos. Struct.93(7), 1842-1853.
[5] Bayat, M., Sahari, B. B. and Saleem, M. [2012] “ The effect of ceramic in combination of two sigmoid functionally graded rotating disks with variable thickness,” Int. J. Comput. Methods9(2), 1240029.
[6] Chi, S. H. and Chung, Y. L. [2006] “ Mechanical behavior of functionally graded material plates under transverse load — Part I: Analysis,” Int. J. Solids Struct.43(13), 3657-3674. · Zbl 1121.74396
[7] Dey, S., Mukhopadhyay, T., Sahu, S. K. and Adhikari, S. [2016a] “ Effect of cutout on stochastic natural frequency of composite curved panels,” Compos. Part B: Eng.105, 188-202.
[8] Dey, S., Mukhopadhyay, T., Spickenheuer, A., Gohs, U. and Adhikari, S. [2016b] “ Uncertainty quantification in natural frequency of composite plates — An artificial neural network based approach,” Adv. Compos. Lett.25(2), 43-48.
[9] Dey, S., Naskar, S., Mukhopadhyay, T., Gohs, U., Spickenheuer, A., Bittrich, L. and Heinrich, G. [2016c] “ Uncertain natural frequency analysis of composite plates including effect of noise — A polynomial neural network approach,” Compos. Struct.143, 130-142.
[10] Dey, S., Mukhopadhyay, T., Spickenheuer, A., Adhikari, S. and Heinrich, G. [2016d] “ Bottom up surrogate based approach for stochastic frequency response analysis of laminated composite plates,” Compos. Struct.140, 712-727.
[11] Dey, S., Mukhopadhyay, T. and Adhikari, S. [2015a] “ Stochastic free vibration analyses of composite shallow doubly curved shells — A Kriging model approach,” Compos. Part B: Eng.70, 99-112.
[12] Dey, S., Mukhopadhyay, T. and Adhikari, S. [2015b] “ Stochastic free vibration analysis of angle-ply composite plates — A RS-HDMR approach,” Compos. Struct.122, 526-536.
[13] Dey, S., Mukhopadhyay, T., Sahu, S. K., Li, G., Rabitz, H. and Adhikari, S. [2015c] “ Thermal uncertainty quantification in frequency responses of laminated composite plates,” Compos. Part B: Eng.80, 186-197.
[14] Elishakoff, I., Gentilini, C. and Santoro, R. [2006] “ Some conventional and unconventional educational column stability problems,” Int. J. Struct. Stab. Dyn.6(1), 139-151.
[15] Fang, J. S. and Zhou, D. [2016] “ Free vibration analysis of rotating axially functionally graded tapered Timoshenko beams,” Int. J. Struct. Stab. Dyn.16(5), 1550007. · Zbl 1359.74206
[16] Fantuzzi, N., Bacciocchi, M., Tornabene, F., Viola, E. and Ferreira, A. J. [2015] “ Radial basis functions based on differential quadrature method for the free vibration analysis of laminated composite arbitrarily shaped plates,” Compos. Part B: Eng.78, 65-78.
[17] Ferreira, A. J. M. [2005] “ Free vibration analysis of Timoshenko beams and Mindlin plates by radial basis functions,” Int. J. Comput. Methods2(1), 15-31. · Zbl 1189.74047
[18] Ferreira, A. J. M., Roque, C. M. C. and Jorge, R. M. N. [2005] “ Free vibration analysis of symmetric laminated composite plates by FSDT and radial basis functions,” Comput. Methods Appl. Mech. Eng.194(39-41), 4265-4278. · Zbl 1151.74431
[19] Ferreira, A. J. M., Roque, C. M. C., Carrera, E., Cinefra, M. and Polit, O. [2011] “ Radial basis functions collocation and a unified formulation for bending, vibration and buckling analysis of laminated plates, according to a variation of Murakami’s zig-zag theory,” Eur. J. Mech. A Solids30(4), 559-570. · Zbl 1278.74187
[20] Gilhooley, D. F., Batra, R. C., Xiao, J. R., McCarthy, M. A. and Gillespie, J. W. Jr [2007] “ Analysis of thick functionally graded plates by using higher-order shear and normal deformable plate theory and MLPG method with radial basis functions,” Compos. Struct.80(4), 539-552. · Zbl 1120.74865
[21] Hardy, R. L. [1990] “ Theory and applications of the multiquadric-biharmonic method 20 years of discovery 1968-1988,” Comput. Math. Appl.19(8-9), 163-208. · Zbl 0692.65003
[22] Jafari-Talookolaei, R.-A., Kargarnovin, M.-H. and Ahmadian, M.-T. [2008] “ Free vibration analysis of cross-ply layered composite beams with finite length on elastic foundation,” Int. J. Comput. Methods5(1), 21-36. · Zbl 1257.74071
[23] Kansa, E. J. [1985] Application of Hardy’s multiquadric interpolation to hydrodynamics (No. UCRL-93522). Lawrence Livermore National Lab.
[24] Karsh, P. K., Mukhopadhyay, T. and Dey, S. [2018a] “ Stochastic investigation of natural frequency for functionally graded plates,” IOP Conf. Series: Materials Science and Engineering326(1), 012003.
[25] Karsh, P. K., Mukhopadhyay, T. and Dey, S. [2018b] “ Stochastic dynamic analysis of twisted functionally graded plates,” Compos. Part B: Eng.147, 259-278.
[26] Karsh, P. K., Mukhopadhyay, T. and Dey, S. [2018c] “ Spatial vulnerability analysis for the first ply failure strength of composite laminates including effect of delamination,” Compos. Struct.184, 554-567.
[27] Karsh, P. K., Mukhopadhyay, T. and Dey, S. [2019] “ Stochastic low-velocity impact on functionally graded plates: Probabilistic and non-probabilistic uncertainty quantification,” Compos. Part B: Eng.159, 461-480.
[28] Kawasaki, A. and Watanabe, R. [1997] “ Concept and P/M fabrication of functionally gradient materials,” Ceram. Int.23(1), 73-83.
[29] Kumar, R. R., Mukhopadhyay, T., Pandey, K. M. and Dey, S. [2018] “ Stochastic buckling analysis of sandwich plates: The importance of higher order modes,” Int. J. Mech. Sci.152, 630-643.
[30] Lee, B. K., Oh, S. J. and Lee, T. E. [2013] “ Free vibration of tapered Timoshenko beams by deformation decomposition,” Int. J. Struct. Stab. Dyn.13(2), 1250057. · Zbl 1359.74147
[31] Li, J., Huo, Q., Li, X., Kong, X. and Wu, W. [2014] “ Vibration analyses of laminated composite beams using refined higher-order shear deformation theory,” Int. J. Mech. Mater. Des.10(1), 43-52.
[32] Liu, L., Chua, L. P. and Ghista, D. N. [2007] “ Mesh-free radial basis function method for static, free vibration and buckling analysis of shear deformable composite laminates,” Compos. Struct.78(1), 58-69.
[33] Loy, C. T., Lam, K. Y. and Reddy, J. N. [1999] “ Vibration of functionally graded cylindrical shells,” Int. J. Mech. Sci.41(3), 309-324. · Zbl 0968.74033
[34] Meirovitch, L. [1990] Dynamics and Control of Structures (John Wiley and Sons, New York). · Zbl 0703.93047
[35] Mukhopadhyay, T., Mahata, A., Dey, S. and Adhikari, S. [2016a] “ Probabilistic analysis and design of HCP nanowires: An efficient surrogate based molecular dynamics simulation approach,” J. Mater. Sci. Technol.32(12), 1345-1351.
[36] Mukhopadhyay, T., Chakraborty, S., Dey, S., Adhikari, S. and Chowdhury, R. [2017] “ A critical assessment of Kriging model variants for high-fidelity uncertainty quantification in dynamics of composite shells,” Arch. Comput. Methods Eng.24(3), 495-518. · Zbl 1376.62133
[37] Mukhopadhyay, T., Naskar, S., Dey, S. and Adhikari, S. [2016b] “ On quantifying the effect of noise in surrogate based stochastic free vibration analysis of laminated composite shallow shells,” Compos. Struct.140, 798-805.
[38] Naebe, M. and Shirvanimoghaddam, K. [2016] “ Functionally graded materials: A review of fabrication and properties,” Appl. Mater. Today5, 223-245.
[39] Naskar, S., Mukhopadhyay, T., Sriramula, S. and Adhikari, S. [2017] “ Stochastic natural frequency analysis of damaged thin-walled laminated composite beams with uncertainty in micromechanical properties,” Compos. Struct.160, 312-334.
[40] Neves, A. M. A., Ferreira, A. J. M., Carrera, E., Cinefra, M., Roque, C. M. C., Jorge, R. M. N. and Soares, C. M. M. [2013] “ Free vibration analysis of functionally graded shells by a higher-order shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations,” Eur. J. Mech. A Solids37, 24-34. · Zbl 1347.74038
[41] Pradyumna, S. and Bandyopadhyay, J. N. [2010] “ Free vibration and buckling of functionally graded shell panels in thermal environments,” Int. J. Struct. Stab. Dyn.10(5), 1031-1053. · Zbl 1271.74176
[42] Ramesh, M. N. V. and Rao, N. M. [2013] “ Free vibration analysis of pre-twisted rotating FGM beams,” Int. J. Mech. Mater. Des.9(4), 367-383.
[43] Reddy, R. M. R., Karunasena, W. and Lokuge, W. [2018] “ Free vibration of functionally graded-GPL reinforced composite plates with different boundary conditions,” Aerosp. Sci. Technol.78, 147-156.
[44] Rodrigues, J. D., Roque, C. M. C., Ferreira, A. J. M., Carrera, E. and Cinefra, M. [2011] “ Radial basis functions-finite differences collocation and a unified formulation for bending, vibration and buckling analysis of laminated plates, according to Murakami’s zig-zag theory,” Compos. Struct.93(7), 1613-1620. · Zbl 1278.74187
[45] Roque, C. M. C., Cunha, D., Shu, C. and Ferreira, A. J. M. [2011] “ A local radial basis functions — Finite differences technique for the analysis of composite plates,” Eng. Anal. Bound. Elem.35(3), 363-374. · Zbl 1259.74078
[46] Roque, C. M. C., Ferreira, A. J. M. and Jorge, R. M. N. [2007] “ A radial basis function approach for the free vibration analysis of functionally graded plates using a refined theory,” J. Sound Vib.300(3-5), 1048-1070.
[47] Tornabene, F., Fantuzzi, N., Viola, E. and Ferreira, A. J. M. [2013] “ Radial basis function method applied to doubly-curved laminated composite shells and panels with a general higher-order equivalent single layer formulation,” Compos. Part B: Eng.55, 642-659.
[48] Touloukian, Y. S. [1967] Thermophysical Properties of High Temperature Solid Materials: Elements (Vol. 1), (Macmillan, New York).
[49] Truong-Thi, T., Vo-Duy, T., Ho-Huu, V. and Nguyen-Thoi, T. [2018] “ Static and free vibration analyses of functionally graded carbon nanotube reinforced composite plates using CS-DSG3,” Int. J. Comput. Methods, 1850133. https://doi.org/org/10.1142/S0219876218501335 · Zbl 07136603
[50] Viswanathan, K. K., Aziz, Z. A., Javed, S., Salleh, S., Tumiran, S. A. B. and Sivakumar, B. [2016] “ Free vibration of cross-ply laminated plates with variable thickness based on shear deformation theory,” Int. J. Comput. Methods13(3), 1650016. · Zbl 1359.74160
[51] Wang, Y. Q. and Zu, J. W. [2018] “ Vibration characteristics of moving sigmoid functionally graded plates containing porosities,” Int. J. Mech. Mater. Des.14(4), 473-489.
[52] Wang, Y. and Wu, D. [2017] “ Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory,” Aerosp. Sci. Technol.66, 83-91.
[53] Xiang, S., Bi, Z. Y., Jiang, S. X., Jin, Y. X. and Yang, M. S. [2011] “ Thin plate spline radial basis function for the free vibration analysis of laminated composite shells,” Compos. Struct.93(2), 611-615.
[54] Xiang, S., Shi, H., Wang, K. M., Ai, Y. T. and Sha, Y. D. [2010] “ Thin plate spline radial basis functions for vibration analysis of clamped laminated composite plates,” Eur. J. Mech. A Solids29(5), 844-850. · Zbl 1481.74726
[55] Xiang, S., Wang, K. M., Ai, Y. T., Sha, Y. D. and Shi, H. [2009] “ Natural frequencies of generally laminated composite plates using the Gaussian radial basis function and first-order shear deformation theory,” Thin Wall. Struct.47(11), 1265-1271.
[56] Xie, X., Zheng, H. and Yang, H. [2015] “ Indirect radial basis function approach for bending, free vibration and buckling analyses of functionally graded microbeams,” Compos. Struct.131, 606-615.
[57] Xing, Y. F., Wu, Y., Liu, B., Ferreira, A. J. M. and Neves, A. M. A. [2017] “ Static and dynamic analyses of laminated plates using a layerwise theory and a radial basis function finite element method,” Compos. Struct.170, 158-168.
[58] Xue, Y., Jin, G., Ding, H. and Chen, M. [2018] “ Free vibration analysis of in-plane functionally graded plates using a refined plate theory and isogeometric approach,” Compos. Struct.192, 193-205.
[59] Zeng, H. and Bert, C. W. [2001] “ Free vibration analysis of discretely stiffened skew plates,” Int. J. Struct. Stab. Dyn.1(1), 125-144. · Zbl 1205.74170
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.