×

Scattering map for the Vlasov-Poisson system. (English) Zbl 1519.35324

Summary: We construct (modified) scattering operators for the Vlasov-Poisson system in three dimensions, mapping small asymptotic dynamics as \(t\rightarrow -\infty\) to asymptotic dynamics as \(t\rightarrow +\infty\). The main novelty is the construction of modified wave operators, but we also obtain a new simple proof of modified scattering. Our analysis is guided by the Hamiltonian structure of the Vlasov-Poisson system. Via a pseudo-conformal inversion, we recast the question of asymptotic behavior in terms of local in time dynamics of a new equation with singular coefficients which is approximately integrated using a generating function.

MSC:

35Q83 Vlasov equations
35Q60 PDEs in connection with optics and electromagnetic theory
35B40 Asymptotic behavior of solutions to PDEs
35B65 Smoothness and regularity of solutions to PDEs
35P25 Scattering theory for PDEs
78A35 Motion of charged particles
82D10 Statistical mechanics of plasmas

References:

[1] Bardos, C.; Degond, P., Global existence for the Vlasov-Poisson equation in \(3\) space variables with small initial data, Ann. l’Institut Henri Poincaré Anal. Non Linéaire, 2, 2, 101-118 (1985) · Zbl 0593.35076 · doi:10.1016/s0294-1449(16)30405-x
[2] Bedrossian, J.; Masmoudi, N.; Mouhot, C., Landau damping: paraproducts and Gevrey regularity, J. Dedicated. Anal. Prob., 2, 1, 71 (2016) · Zbl 1402.35058
[3] Bedrossian, J.; Masmoudi, N.; Mouhot, C., Landau damping in finite regularity for unconfined systems with screened interactions, Commun. Pure Appl. Math., 71, 3, 537-576 (2018) · Zbl 1384.35127 · doi:10.1002/cpa.21730
[4] Bourgain, J.: Global Solutions of Nonlinear Schrödinger Equations. American Mathematical Society Colloquium Publications, Vol. 46. American Mathematical Society, Providence, RI (1999) · Zbl 0933.35178
[5] Cazenave, T.; Naumkin, I., Modified scattering for the critical nonlinear Schrödinger equation, J. Funct. Anal., 274, 2, 402-432 (2018) · Zbl 1428.35490 · doi:10.1016/j.jfa.2017.10.022
[6] Choi, S-H; Kwon, S., Modified scattering for the Vlasov-Poisson system, Nonlinearity, 29, 9, 2755-2774 (2016) · Zbl 1351.82041 · doi:10.1088/0951-7715/29/9/2755
[7] Christodoulou, D., Global solutions of nonlinear hyperbolic equations for small initial data, Commun. Pure Appl. Math., 39, 2, 267-282 (1986) · Zbl 0612.35090 · doi:10.1002/cpa.3160390205
[8] Dolbeault, J.; Sánchez, Ó.; Soler, J., Asymptotic behaviour for the Vlasov-Poisson system in the stellar-dynamics case, Arch. Ration. Mech. Anal., 171, 3, 301-327 (2004) · Zbl 1057.70009 · doi:10.1007/s00205-003-0283-4
[9] Golse, F.; Mouhot, C.; Paul, T., On the mean field and classical limits of quantum mechanics, Commun. Math. Phys., 343, 1, 165-205 (2016) · Zbl 1418.81021 · doi:10.1007/s00220-015-2485-7
[10] Golse, F.; Paul, T., The Schrödinger equation in the mean-field and semiclassical regime, Arch. Ration. Mech. Anal., 223, 1, 57-94 (2017) · Zbl 1359.35164 · doi:10.1007/s00205-016-1031-x
[11] Grenier, E., Nguyen, T.T., Rodnianski, I.: Landau damping for analytic and Gevrey data. arXiv:2004.05979 (to appear in Math. Res. Lett.) · Zbl 1496.35080
[12] Guo, Y.; Rein, G., Stable steady states in stellar dynamics, Arch. Ration. Mech. Anal., 147, 3, 225-243 (1999) · Zbl 0935.70011 · doi:10.1007/s002050050150
[13] Hadzic, M., Rein, G., Straub, C.: On the existence of linearly oscillating galaxies. arXiv:2102.11672 · Zbl 1510.85003
[14] Han-Kwan, D., Nguyen, T.T., Rousset, F.: Asymptotic stability of equilibria for screened Vlasov-Poisson systems via pointwise dispersive estimates. arXiv:1906.05723 · Zbl 1492.35341
[15] Hani, Z.; Pausader, B.; Tzvetkov, N.; Visciglia, N., Modified scattering for the cubic Schrödinger equation on product spaces and applications, Forum Math., 3, e4-63 (2015) · Zbl 1326.35348 · doi:10.1017/fmp.2015.5
[16] Hayashi, N.; Naumkin, PI, Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations, Am. J. Math., 120, 2, 369-389 (1998) · Zbl 0917.35128 · doi:10.1353/ajm.1998.0011
[17] Hwang, HJ; Rendall, A.; Velázquez, JJL, Optimal gradient estimates and asymptotic behaviour for the Vlasov-Poisson system with small initial data, Arch. Ration. Mech. Anal., 200, 1, 313-360 (2011) · Zbl 1228.35252 · doi:10.1007/s00205-011-0405-3
[18] Ifrim, M.; Tataru, D., Global bounds for the cubic nonlinear Schrödinger equation (NLS) in one space dimension, Nonlinearity, 28, 8, 2661-2675 (2015) · Zbl 1330.35402 · doi:10.1088/0951-7715/28/8/2661
[19] Illner, R.; Rein, G., Time decay of the solutions of the Vlasov-Poisson system in the plasma physical case, Math. Methods Appl. Sci., 19, 17, 1409-1413 (1996) · Zbl 0872.35087 · doi:10.1002/(SICI)1099-1476(19961125)19:17<1409::AID-MMA836>3.0.CO;2-2
[20] Ionescu, A.D., Pausader, B., Wang, X.C., Widmayer, K.: On the asymptotic behavior of solutions to the Vlasov-Poisson system. arXiv:2005.03617 (to appear in Int. Math. Res. Not.) · Zbl 1491.35082
[21] Kato, J.; Pusateri, F., A new proof of long-range scattering for critical nonlinear Schrödinger equations, Differ. Integr. Equ., 24, 9-10, 923-940 (2011) · Zbl 1249.35307
[22] Lemou, M.; Méhats, F.; Raphael, P., The orbital stability of the ground states and the singularity formation for the gravitational Vlasov Poisson system, Arch. Ration. Mech. Anal., 189, 3, 425-468 (2008) · Zbl 1221.35417 · doi:10.1007/s00205-008-0126-4
[23] Lemou, M.; Méhats, F.; Raphaël, P., Stable self-similar blow up dynamics for the three dimensional relativistic gravitational Vlasov-Poisson system, J. Am. Math. Soc., 21, 4, 1019-1063 (2008) · Zbl 1206.82092 · doi:10.1090/S0894-0347-07-00579-6
[24] Lions, P-L; Perthame, B., Propagation of moments and regularity for the \(3\)-dimensional Vlasov-Poisson system, Invent. Math., 105, 2, 415-430 (1991) · Zbl 0741.35061 · doi:10.1007/BF01232273
[25] Meyer, K.R., Offin, D.C.: Introduction to Hamiltonian Dynamical Systems and the N-body Problem, 3rd Ed., Applied Mathematical Sciences, Vol. 90. Springer, Cham (2017) · Zbl 1372.70002
[26] Mouhot, C.: Stabilité orbitale pour le système de Vlasov-Poisson gravitationnel (d’après Lemou-Méhats-Raphaël, Guo, Lin, Rein et al.). Séminaire Bourbaki, Vol. 2011/2012, Exposés 1043-1058. Astérisque 352, Exp. No. 1044, vii, 35-82 (2013) · Zbl 1287.70008
[27] Mouhot, C.; Villani, C., On Landau damping, Acta Math., 207, 1, 29-201 (2011) · Zbl 1239.82017 · doi:10.1007/s11511-011-0068-9
[28] Ouyang, Z.M.: On the long-time behavior of a Wave-Klein-Gordon coupled system. arXiv:2010.04882
[29] Pankavich, S.: Exact large time behavior of spherically-symmetric plasmas. arXiv:2006.11447 (to appear in SIAM J. Math. Anal.) · Zbl 1476.35275
[30] Pausader, B., Widmayer, K.: Stability of a point charge for the Vlasov-Poisson system: the radial case. Commun. Math. Phys. 385, 1741-1769 (2021) · Zbl 1475.35343
[31] Perthame, B., Time decay, propagation of low moments and dispersive effects for kinetic equations, Commun. Partial Differ. Equ., 21, 3-4, 659-686 (1996) · Zbl 0852.35139
[32] Pfaffelmoser, K., Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Differ. Equ., 95, 2, 281-303 (1992) · Zbl 0810.35089 · doi:10.1016/0022-0396(92)90033-J
[33] Schaeffer, J., Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions, Commun. Partial Differ. Equ., 16, 8-9, 1313-1335 (1991) · Zbl 0746.35050 · doi:10.1080/03605309108820801
[34] Schaeffer, J., Asymptotic growth bounds for the Vlasov-Poisson system, Math. Methods Appl. Sci., 34, 3, 262-277 (2011) · Zbl 1208.82035 · doi:10.1002/mma.1354
[35] Schaeffer, J., On space-time estimates for the Vlasov-Poisson system, Math. Methods Appl. Sci., 43, 7, 4075-4085 (2020) · Zbl 1454.35384
[36] Smulevici, J., Small data solutions of the Vlasov-Poisson system and the vector field method, Ann. PDE, 2, 2, Art. 11, 55 (2016) · Zbl 1397.35033 · doi:10.1007/s40818-016-0016-2
[37] Tao, T., A pseudoconformal compactification of the nonlinear Schrödinger equation and applications, New York J. Math., 15, 265-282 (2009) · Zbl 1184.35296
[38] Wang, X.C.: Decay estimates for the \(3d\) relativistic and non-relativistic Vlasov-Poisson systems. arXiv:1805.10837 · Zbl 1515.35276
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.