×

Chebyshev spectral methods for computing center manifolds. (English) Zbl 1481.37099

Computing the stable, unstable and center manifolds of a given dynamical system gives one much insight into the properties and evolution of the system. For this reason, several techniques for their determination (both analytical and numerical) have been proposed over the years. In the particular case of center manifolds, numerical techniques based on Taylor polynomials provide reasonable approximations, but only in a neighborhood of an equilibrium point or a periodic orbit.
The aim of the present paper consists in approximating the center manifold by certain functions obeying a system of partial differential equations. These functions are subsequently determined by applying Chebyshev spectral methods. As a result, the validity of the approximations is extended to larger regions in the phase space. The technique is described in detail and illustrated for several dynamical systems, both Hamiltonian and non-Hamiltonian, with one-, two- and four-dimensional center manifolds. Although the technique shows accurate results for the examples considered, computing higher-dimensional center manifolds still presents challenging computational issues.

MSC:

37M21 Computational methods for invariant manifolds of dynamical systems
37M15 Discretization methods and integrators (symplectic, variational, geometric, etc.) for dynamical systems
65P10 Numerical methods for Hamiltonian systems including symplectic integrators
Full Text: DOI

References:

[1] R. Abraham and J. E. Marsden, Foundations of Mechanics, \(2^{nd}\) edition, Addison-Wesley, Redwood City, CA, 1978.
[2] W.-J. Beyn; W. Kleß, Numerical Taylor expansions of invariant manifolds in large dynamical systems, Numer. Math., 80, 1-38 (1998) · Zbl 0909.65044 · doi:10.1007/s002110050357
[3] J. P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd. ed., Dover, Mineola, NY, 2001. · Zbl 0994.65128
[4] C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer-Verlag, Berlin, 2006. · Zbl 1093.76002
[5] A. R. Champneys and G. J. Lord, Computation of homoclinic solutions to periodic orbits in a reduced water-wave problem, Phys. D, 102 (1997), 101-124. · Zbl 0888.34040
[6] E. J. Doedel and B. E. Oldeman, AUTO-07P: Continuation and Bifurcation Software for Ordinary Differential Equations, 2012. Available online from http://cmvl.cs.concordia.ca.
[7] T. Eirola; J. von Pfaler, Numerical Taylor expansions for invariant manifolds, Numer. Math., 99, 25-46 (2004) · Zbl 1063.65139 · doi:10.1007/s00211-004-0537-6
[8] A. Farrés; À. Jorba, On the high order approximation of the centre manifold for ODEs, Discrete Contin. Dyn. Syst. B, 14, 977-1000 (2010) · Zbl 1213.37119 · doi:10.3934/dcdsb.2010.14.977
[9] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983. · Zbl 0515.34001
[10] J. Guckenheimer; A. Vladimirsky, A fast method for approximating invariant manifolds, SIAM J. Appl. Dynam. Sys., 3, 232-260 (2004) · Zbl 1059.37019 · doi:10.1137/030600179
[11] À. Haro, M. Canadell, J.-L. Figueras, A. Luque and J.-M. Mondelo, The Parameterization Method for Invariant Manifolds: From Rigorous Results to Effective Computations, Springer-Verlag, Cham, Switzerland, 2016. · Zbl 1372.37002
[12] M. Hénon; C. Heiles, The applicability of the third integral of motion: Some numerical experiments, Astronom. J., 69, 73-79 (1964) · doi:10.1086/109234
[13] À. Jorba, A methodology for the numerical computation of normal forms, centre manifolds and first integrals of Hamiltonian systems, Experiment. Math., 8, 155-195 (1999) · Zbl 0983.37107 · doi:10.1080/10586458.1999.10504397
[14] D. A. Kopriva, Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers, Springer-Verlag, Berlin, 2009. · Zbl 1172.65001
[15] B. Krauskopf and H. M. Osinga, Computing invariant manifolds via the continuation of orbit segments, in Numerical Continuation Methods for Dynamical Systems (eds. B. Krauskopf, H. M. Osinga and J. Galán-Vioque), Springer-Verlag, Dordrecht, (2007), 117-154. · Zbl 1126.65111
[16] B. Krauskopf; H. M. Osinga; E. J. Doedel; M. E. Henderson; J. Guckenheimer; A. Vladimirsky; M. Dellnitz; O. Junge, A survey of methods for computing (un)stable manifolds of vector fields, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15, 763-791 (2005) · Zbl 1086.34002 · doi:10.1142/S0218127405012533
[17] F. Ma; T. Küpper, A numerical method to calculate center manifolds of ODE’s, Appl. Anal., 54, 1-15 (1994) · Zbl 0830.65073 · doi:10.1080/00036819408840264
[18] F. Ma; T. Küpper, Numerical calculation of invariant manifolds for maps, Numer. Linear Algebra Appl., 1, 141-150 (1994) · Zbl 0837.65054 · doi:10.1002/nla.1680010205
[19] MATLAB, Version 9.7.0 (R2019b), The MathWorks Inc., Natick, MA, 2019.
[20] Mathematica, Version 12.0, Wolfram Research, Inc., Champaign, IL, 2019.
[21] K. R. Meyer and D. C. Offin, Introduction to Hamiltonian Dynamical Systems and the \(N\)-Body Problem, \(3^{rd}\) edition, Springer-Verlag, New York, 2017. · Zbl 1372.70002
[22] T. Sakajo; K. Yagasaki, Chaotic motion of the \(N\)-vortex problem on a sphere: I. Saddle-centers in two-degree-of-freedom Hamiltonians, J. Nonlinear Sci., 18, 485-525 (2008) · Zbl 1168.37026 · doi:10.1007/s00332-008-9019-9
[23] J. A. Sethian; A. Vladimirsky, Ordered upwind methods for static Hamilton-Jacobi equations: Theory and applications, SIAM J. Numer. Anal., 41, 325-363 (2003) · Zbl 1040.65088 · doi:10.1137/S0036142901392742
[24] L. N. Trefethen, Spectral Methods in MATLAB, SIAM, Philadelphia, PA, 2000. · Zbl 0953.68643
[25] A. Vanderbauwhede, Centre manifolds, normal forms and elementary bifurcations, in Dynamics Reported, Vol. 2 (eds. U. Kirchgraber and H. O. Walther), John Wiley and Sons, Chichester, (1989), 89-169. · Zbl 0677.58001
[26] J. A. C. Weideman; S. C. Reddy, A MATLAB differentiation matrix suite, ACM Trans. Math. Software, 26, 465-519 (2000) · doi:10.1145/365723.365727
[27] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, \(2^{nd}\) edition, Springer-Verlag, New York, 2003. · Zbl 1027.37002
[28] K. Yagasaki, Higher-order Melnikov method and chaos for two-degree-of-freedom Hamiltonian systems with saddle-centers, Discrete Contin. Dyn. Syst. A, 29, 387-402 (2011) · Zbl 1213.37092 · doi:10.3934/dcds.2011.29.387
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.