×

Transverse foliations in the rotating Kepler problem. (English) Zbl 1536.70011

The author constructs finite energy foliations (for all negative energies), and transverse foliations in the neighbourhoods of the circular orbits in the rotating Kepler problem, planar circular restricted thee-body problem (PC3BP). This paper has been a first step for its ultimate goal that is to recover and refine McGehee’s results on homoclinics and to establish a theoretical foundation to the numerical demonstration of the existence of a homoclinic-heteroclinic chain in the PCR3BP, using pseudoholomorphic curves. The author also presents an alternative way to obtain a transverse foliation whose pages are annuli.

MSC:

70F07 Three-body problems
70K44 Homoclinic and heteroclinic trajectories for nonlinear problems in mechanics

References:

[1] Abraham, R., Marsden, J.E.: Foundations of mechanics. Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., (1978). Second edition, revised and enlarged, With the assistance of Tudor Raţiu and Richard Cushman · Zbl 0393.70001
[2] Albers, P.; Fish, JW; Frauenfelder, U.; van Koert, O., The Conley-Zehnder indices of the rotating Kepler problem, Math. Proc. Camb. Philos. Soc., 154, 2, 243-260 (2013) · Zbl 1359.70076 · doi:10.1017/S0305004112000515
[3] Albers, P.; Frauenfelder, U.; van Koert, O.; Paternain, GP, Contact geometry of the restricted three-body problem, Comm. Pure Appl. Math., 65, 2, 229-263 (2012) · Zbl 1300.70006 · doi:10.1002/cpa.21380
[4] de Oliveira, C.L.: 3-2-1 foliations for Reeb flows on the tight 3-sphere. arXiv preprint, (2021)
[5] de Paulo, N.V., Hryniewicz, U.L., Kim, S., Salomão, P.A.S.: Genus zero transverse foliations for weakly convex Reeb flows on the tight \(3\)-sphere. preprint, (2022)
[6] de Paulo, N.V., Salomão, P.A.S.: Systems of transversal sections near critical energy levels of Hamiltonian systems in \({\mathbb{R}}^4\). Mem. Amer. Math. Soc., 252(1202):v+105, (2018)
[7] Frauenfelder, U.; Kang, J., Real holomorphic curves and invariant global surfaces of section, Proc. Lond. Math. Soc. (3), 112, 3, 477-511 (2016) · Zbl 1339.53081 · doi:10.1112/plms/pdw003
[8] Frauenfelder, U.; van Koert, O., The restricted three-body problem and holomorphic curves (2018), Cham: Pathways in Mathematics. Birkhäuser/Springer, Cham · Zbl 1401.53001 · doi:10.1007/978-3-319-72278-8
[9] Hofer, H., Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math., 114, 3, 515-563 (1993) · Zbl 0797.58023 · doi:10.1007/BF01232679
[10] Hofer, H., Wysocki, K., Zehnder, E.: Properties of pseudo-holomorphic curves in symplectisations. II. Embedding controls and algebraic invariants. Geom. Funct. Anal., 5(2):270-328, (1995) · Zbl 0845.57027
[11] Hofer, H., Wysocki, K., Zehnder, E.: Properties of pseudoholomorphic curves in symplectisations. I. Asymptotics. Ann. Inst. H. Poincaré Anal. Non Linéaire, 13(3):337-379, (1996) · Zbl 0861.58018
[12] Hofer, H., Wysocki, K., Zehnder, E.: Properties of pseudoholomorphic curves in symplectizations. III. Fredholm theory. In Topics in nonlinear analysis, volume 35 of Progr. Nonlinear Differential Equations Appl., pages 381-475. Birkhäuser, Basel, (1999) · Zbl 0924.58003
[13] Hofer, H.; Wysocki, K.; Zehnder, E., Finite energy cylinders of small area, Ergodic Theory Dynam. Systems, 22, 5, 1451-1486 (2002) · Zbl 1041.57009 · doi:10.1017/S0143385702001013
[14] Hofer, H.; Wysocki, K.; Zehnder, E., Finite energy foliations of tight three-spheres and Hamiltonian dynamics, Ann. of Math. (2), 157, 1, 125-255 (2003) · Zbl 1215.53076 · doi:10.4007/annals.2003.157.125
[15] Hryniewicz, U., Fast finite-energy planes in symplectizations and applications, Trans. Amer. Math. Soc., 364, 4, 1859-1931 (2012) · Zbl 1242.53109 · doi:10.1090/S0002-9947-2011-05387-0
[16] Hryniewicz, U.; Salomão, PAS, On the existence of disk-like global sections for Reeb flows on the tight 3-sphere, Duke Math. J., 160, 3, 415-465 (2011) · Zbl 1246.53114 · doi:10.1215/00127094-1444278
[17] Hryniewicz, U.L., Salomão, P.A.S.: Elliptic bindings for dynamically convex Reeb flows on the real projective three-space. Calc. Var. Partial Differential Equations, 55(2):Art. 43, 57, (2016) · Zbl 1345.53082
[18] Kim, J.; Kim, S., \(J^+\)-like invariants of periodic orbits of the second kind in the restricted three-body problem, J. Topol. Anal., 12, 3, 675-712 (2020) · Zbl 1473.70016 · doi:10.1142/S1793525319500614
[19] Kim, S., Symmetric periodic orbits and invariant disk-like global surfaces of section on the three-sphere, Trans. Amer. Math. Soc., 375, 6, 4107-4151 (2022) · Zbl 1504.37048 · doi:10.1090/tran/8516
[20] Koon, WS; Lo, MW; Marsden, JE; Ross, SD, Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics, Chaos, 10, 2, 427-469 (2000) · Zbl 0987.70010 · doi:10.1063/1.166509
[21] Liapounoff, A.: Problème Général de la Stabilité du Mouvement. Annals of Mathematics Studies, No. 17. Princeton University Press, Princeton, N. J.; Oxford University Press, London, (1947) · Zbl 0031.18403
[22] McDuff, D., Salamon, D.: \(J\)-holomorphic curves and symplectic topology. American Mathematical Society Colloquium Publications, vol. 52. American Mathematical Society, Providence, RI (2004) · Zbl 1064.53051
[23] McGehee, R.: Some homoclinic orbits for the restricted three-body problem. 1969. Thesis (Ph.D.)-The University of Wisconsin-Madison
[24] Meyer, K.R., Offin, D.C.: Introduction to Hamiltonian dynamical systems and the N-body problem, volume 90 of Applied Mathematical Sciences. Springer, Cham, third edition, (2017) · Zbl 1372.70002
[25] Moser, J., Regularization of Kepler’s problem and the averaging method on a manifold, Comm. Pure Appl. Math., 23, 609-636 (1970) · Zbl 0193.53803 · doi:10.1002/cpa.3160230406
[26] Salomão, P.A.S.: private communication. (2023)
[27] Siefring, R., Intersection theory of punctured pseudoholomorphic curves, Geom. Topol., 15, 4, 2351-2457 (2011) · Zbl 1246.32028 · doi:10.2140/gt.2011.15.2351
[28] Wendl, C.: Finite energy foliations and surgery on transverse links. ProQuest LLC, Ann Arbor, MI, 2005. Thesis (Ph.D.)-New York University
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.