×

Numerical methods for solving large-scale systems of differential equations. (English) Zbl 1526.65014

Summary: In this paper, we propose two new methods to solve large-scale systems of differential equations, which are based on the Krylov method. In the first one, the exact solution with the exponential projection technique of the matrix. In the second, we get a new problem of small size, by dropping the initial problem, and then we solve it in ways, such as the Rosenbrock and the BDF. Some theoretical results are presented such as an accurate expression of the remaining criteria. We give an expression of error report and numerical values to compare the two methods in terms of how long each method takes, and we also compare the approaches.

MSC:

65F50 Computational methods for sparse matrices
15A24 Matrix equations and identities
65F10 Iterative numerical methods for linear systems
65L05 Numerical methods for initial value problems involving ordinary differential equations
Full Text: DOI

References:

[1] Agoujil, S.; Bentbib, AH; Jbilou, K.; Sadek, ELM, A minimal residual norm method for large-scale Sylvester matrix equations, Elect. Trans. Numer. Anal., 43, 45-59 (2014) · Zbl 1302.65096
[2] Bataineh, AS; Isik, OR; Oqielat, MA; Hashim, I., An enhanced adaptive bernstein collocation method for solving systems of ODEs, Mathematics, 9, 4, 425 (2021) · doi:10.3390/math9040425
[3] Bataineh, AS; Noorani, MSM; Hashim, I., Solving systems of ODEs by homotopy analysis method, Commun. Nonlinear Sci. Numer. Simul., 13, 2060-2070 (2008) · Zbl 1221.65194 · doi:10.1016/j.cnsns.2007.05.026
[4] Bentbib, A.H., Jbilou, K., Sadek, E.M.: On some Krylov subspace based methods for large-scale nonsymmetric algebraic Riccati problems. Comput. Math. Appl. 2555-2565, (2015) · Zbl 1443.65054
[5] Bentbib, AH; Jbilou, K.; Sadek, EL, On some extended block Krylov based methods for large scale nonsymmetric Stein matrix equations, Mathematics, 5, 2, 21 (2017) · Zbl 06734415 · doi:10.3390/math5020021
[6] Druskin, V.; Knizhnerman, L., Extended Krylov subspaces: approximation of the matrix square root and related functions, SIAM J. Matrix Anal. Appl., 19, 3, 755-771 (1998) · Zbl 0912.65022 · doi:10.1137/S0895479895292400
[7] Davis, T.: The University of Florida Sparse Matrix Collection, NA Digest, Vol. 97, No. 23, 7 June 1997. Available online: http://www.cise.ufl.edu/research/sparse/matrices. Accessed on June, 10, 2016 · Zbl 1365.65123
[8] Ernst, H.; Gerhard, W.: Solving ordinary differential equations II stiff and differential-algebraic problems. Second Revised Edition With 137 Figures (2002) · Zbl 0729.65051
[9] Hairer, E.; Wanner, G., Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems (1991), Berlin: Springer, Berlin · Zbl 0729.65051 · doi:10.1007/978-3-662-09947-6
[10] Higham, NJ, The scaling and squaring method for the matrix exponential revisited, SIAM J. Matrix Anal. Appl., 26, 4, 1179-1193 (2005) · Zbl 1081.65037 · doi:10.1137/04061101X
[11] Maleknejad, K.; Basirat, B.; Hashemizadeh, E., A Bernstein operational matrix approach for solving a system of high order linear Volterra-Fredholm integro-differential equations, Math. Comput. Model., 55, 1363-1372 (2012) · Zbl 1255.65245 · doi:10.1016/j.mcm.2011.10.015
[12] Park, JH, GCS of a class of chaotic dynamic systems, Chaos Solitons Fract., 26, 1429-1435 (2005) · Zbl 1122.93071 · doi:10.1016/j.chaos.2005.03.027
[13] Park, JH, Chaos synchronization between two different chaotic dynamical systems, Chaos Solitons Fract., 27, 549-554 (2006) · Zbl 1102.37304 · doi:10.1016/j.chaos.2005.03.049
[14] Penzl, T.: LYAPACK A MATLAB Toolbox for Large Lyapunov and Riccati Equations, Model Reduction Problems, and Linear-Quadratic Optimal Control Problems. http://www.tuchemintz.de/sfb393/lyapack
[15] Rosenbrock, HH, Some general implicit processes for the numerical solution of differential equations, Comput. J., 5, 4, 329-330 (1963) · Zbl 0112.07805 · doi:10.1093/comjnl/5.4.329
[16] Rostamy, D.; Karimi, K.: A new operational matrix method based on the Bernstein polynomials for solving the backward inverse heat conduction problems. Int. J. Numer. Meth. Heat Fluid Flow 24, 669-678 (2014) · Zbl 1356.80071
[17] Saad, Y.: Numerical solution of large Lyapunov equations. In: Kaashoek, M.A., van Schuppen, J.H., . Ran A.C (eds.) Signal Processing, Scattering, Operator Theory and Numerical Methods. Proceedings of the International Symposium MTNS-89, vol. 3 Boston, Birkhauser, pp. 503-511 (1990) · Zbl 0719.65034
[18] Saad, Y., Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 29, 1, 209-228 (1992) · Zbl 0749.65030 · doi:10.1137/0729014
[19] Sadek, El.M. Bentbib, A.H. Sadek, L., H.T. Alaoui, Global extended Krylov subspace methods for large-scale differential Sylvester matrix equations, J. Appl. Math. Comput. 62: 15717177 (2020) · Zbl 1505.65196
[20] Sadek, L., Talibi Alaoui, H.: The extended block Arnoldi method for solving generalized differential Sylvester equations. J. Math. Model. 189-206 (2020) · Zbl 1474.65113
[21] Shawagfeh, N.; Kaya, D., Comparing numerical methods for the solutions of systems of ordinary differential equations, Appl. Math. Lett., 17, 323-328 (2004) · Zbl 1061.65062 · doi:10.1016/S0893-9659(04)90070-5
[22] Van der Vorst, HA, Iterative Krylov Methods for Large Linear Systems (2003), Cambridge: Cambridge University Press, Cambridge · Zbl 1023.65027 · doi:10.1017/CBO9780511615115
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.