×

On construction of combined shock-capturing finite-difference schemes of high accuracy. (English) Zbl 1368.65144

Dimov, Ivan (ed.) et al., Numerical analysis and its applications. 6th international conference, NAA 2016, Lozenetz, Bulgaria, June 15–22, 2016. Revised selected papers. Cham: Springer (ISBN 978-3-319-57098-3/pbk; 978-3-319-57099-0/ebook). Lecture Notes in Computer Science 10187, 525-532 (2017).
Summary: We show that compact scheme of the third order of weak approximation (unlike the TVD scheme) allows to obtain the second order of integral convergence in intervals crossing the front line of the shock wave and, as consequence, to conserve the high order of local convergence in the domain of shock influences. It allows to use the compact scheme as a basis scheme in construction of combined shock-capturing finite-difference schemes of high accuracy.
For the entire collection see [Zbl 1360.65014].

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35L67 Shocks and singularities for hyperbolic equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Godunov, S.K.: A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Mat. Sb. 47, 271–306 (1959) · Zbl 0171.46204
[2] Boris, J.P., Book, D.L., Hain, K.: Flux-corrected transport. II. Generalizations of the method. Comput. Math. Math. Phys. 18, 248–283 (1975) · Zbl 0306.76004
[3] Van Leer, B.: Toward the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979) · Zbl 1364.65223 · doi:10.1016/0021-9991(79)90145-1
[4] Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983) · Zbl 0565.65050 · doi:10.1016/0021-9991(83)90136-5
[5] Harten, A., Osher, S.: Uniformly high-order accurate nonoscillatory schemes. SIAM J. Numer. Anal. 24, 279–309 (1987) · Zbl 0627.65102 · doi:10.1137/0724022
[6] Nessyahu, H., Tadmor, E.: Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87, 408–463 (1990) · Zbl 0697.65068 · doi:10.1016/0021-9991(90)90260-8
[7] Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994) · Zbl 0811.65076 · doi:10.1006/jcph.1994.1187
[8] Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996) · Zbl 0877.65065 · doi:10.1006/jcph.1996.0130
[9] Iserles, A.: Generalized leapfrog methods. IMA J. Numer. Anal. 6, 381–392 (1986) · Zbl 0637.65089 · doi:10.1093/imanum/6.4.381
[10] Karabasov, S.A., Goloviznin, V.M.: New efficient high-resolution method for nonlinear problems in aeroacoustics. AIAA J. 45, 2861–2871 (2007) · doi:10.2514/1.29796
[11] Karabasov, S.A., Goloviznin, V.M.: Compact accurately boundary-adjusting high-resolution technique for fluid dynamics. J. Comput. Phys. 228, 7426–7451 (2009) · Zbl 1172.76034 · doi:10.1016/j.jcp.2009.06.037
[12] Ostapenko, V.V.: The convergence of difference schemes for non-stationary shock wave front. Comput. Math. Math. Phys. 37, 622–625 (1997)
[13] Casper, J., Carpenter, M.H.: Computational consideration for the simulation of shock-induced sound. SIAM J. Sci. Comput. 19, 813–828 (1998) · Zbl 0918.76045 · doi:10.1137/S1064827595294101
[14] Engquist, B., Sjogreen, B.: The convergence rate of finite difference schemes in the presence of shocks. SIAM J. Numer. Anal. 35, 2464–2485 (1998) · Zbl 0922.76254 · doi:10.1137/S0036142997317584
[15] Ostapenko, V.V.: On the finite-difference approximation of the Hugoniot conditions on a shock wave front propagating with variable velocity. Comput. Math. Math. Phys. 38, 1299–1311 (1998) · Zbl 1086.76552
[16] Kovyrkina, O.A., Ostapenko, V.V.: On the convergence of shock-capturing difference schemes. Dokl. Math. 82, 599–603 (2010) · Zbl 1204.65105 · doi:10.1134/S1064562410040265
[17] Mikhailov, N.A.: On convergence rate of WENO schemes behind a shock front. Matem. Mod. 27, 129–138 (2015) · Zbl 1340.76048
[18] MacCormack, R.W.: The effect of viscosity in hypervelocity impact cratering. In: AIAA Paper 69–354 (1969) · doi:10.2514/6.1969-354
[19] Rusanov, V.V.: Difference schemes of third order accuracy for the through calculation of discontinuous solutions. Dokl. Akad. Nauk SSSR 180, 1303–1305 (1968)
[20] Kovyrkina, O.A., Ostapenko, V.V.: On the practical accuracy of shock-capturing schemes. Math. Model. Comput. Simul. 6, 183–191 (2014) · Zbl 1357.65121 · doi:10.1134/S2070048214020069
[21] Ostapenko, V.V.: Construction of high-order accurate shock-capturing finite-difference schemes for unsteady shock waves. Comput. Math. Math. Phys. 40, 1784–1800 (2000) · Zbl 1001.76069
[22] Stoker, J.J.: Water Waves: The Mathematical Theory with Applications. Wiley, Hoboken (1957) · Zbl 0078.40805
[23] Lax, P., Wendroff, B.: Systems of conservation laws. Commun. Pure Appl. Math. 13, 217–237 (1960) · Zbl 0152.44802 · doi:10.1002/cpa.3160130205
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.