×

An application of the Malliavin calculus for calculating the precise and approximate prices of options with stochastic volatility. (English. Ukrainian original) Zbl 1377.91160

Theory Probab. Math. Stat. 94, 97-120 (2017); translation from Teor. Jmovirn. Mat. Stat. 94, 93-115 (2016).
The authors study the exact price problem of a European type option by using mathematical models with stochastic volatility. Using Malliavin calculus they evaluate the distribution density of a functional of the stochastic volatility which is needed to the exact price problem.

MSC:

91G20 Derivative securities (option pricing, hedging, etc.)
60H30 Applications of stochastic analysis (to PDEs, etc.)
60H07 Stochastic calculus of variations and the Malliavin calculus
Full Text: DOI

References:

[1] Alos E. Alos and Ch-O. Ewald, A note on the Malliavin differentiability of the Heston volatility, SSRN Electronic J. 09/2005 (2005).
[2] BarndorffShephard O. E. Barndorff-Nielsen and N. Shephard, Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics, J. Royal Statist. Soc.: Ser. B (Statistical Methodology) 63 (2001), 167-241, · Zbl 0983.60028
[3] Cox_Ing_Ross J. C. Cox, J. E. Ingersoll, and S. A. Ross, A theory of the term structure of interest rates, Econometrica 53 (1985), no. 2, 385-407. · Zbl 1274.91447
[4] DelbSchach F. Delbaen and W. Schachermayer, The Mathematics of Arbitrage, Springer Finance, New York, 2006. · Zbl 1106.91031
[5] Andreas S. Dereich, A. Neuenkirch, and L. Szpruch, An Euler-type method for the strong approximation of the Cox-Ingersoll-Ross process, Proc. Royal Soc. A: Mathematical, Physical and Engineering Sciences 468 (2012), 1105-1115. · Zbl 1364.65013
[6] DIppolitiMoretto F. D’Ippoliti, E. Moretto, S. Pasquali, and B. Trivellato, Exact and approximated option pricing in a stochastic volatility jump-diffusion model, Mathematical and Statistical Methods for Actuarial Sciences and Finance (eds. M. Corazzo and C. Pizzi), Springer-Verlag Italia, Dordrecht-Heidelberg-London-Milan-New York, 2010, 133-142. · Zbl 1378.91118
[7] Garman M. Garman, A general theory of asset valuation under diffusion state processes, Working Paper, Univ. of California, Berkeley, 1976. · Zbl 0338.90038
[8] Goard J. Goard, Exact and approximate solutions for options with time-dependent stochastic volatility, Appl. Math. Modell. 38 (2014), 2771-2780. · Zbl 1427.91273
[9] Heston1993 S. Heston, The review of financial studies, J. Finance 6(2) (1993), 327-343.
[10] HullWhite R. Frey, The pricing of options on assets with stochastic volatilities, J. Finance 42 (1987), 281-300.
[11] Watanabe N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland Mathematical Library, Amsterdam, vol. 24, 1986. · Zbl 0607.60041
[12] Fournie E. Fournie, J.-M. Lasry, J. Lebuchoux, P.-L. Lions, and T. Touzi, Applications of Malliavin calculus to Monte-Carlo methods in finance, Finance & Stochastics 3 (1999), 391-412. · Zbl 0947.60066
[13] SKI_YSM-1 S. Kuchuk-Iatsenko and Yu. Mishura, Pricing the European call option in the model with stochastic volatility driven by Ornstein-Uhlenbeck process. Exact formulas, Modern Stoch. Theory Appl. 2(3) (2015), 233-249. · Zbl 1403.91345
[14] SKI_YSM-2 S. Kuchuk-Iatsenko and Yu. Mishura, Pricing the European call option in the model with stochastic volatility driven by Ornstein-Uhlenbeck process. Simulation, Modern Stoch. Theory Appl. 2(4) (2015), 355-369. · Zbl 1403.91346
[15] NuaLeon J. A. Leon and D. Nualart, Stochastic evolution equations with random generators, Ann. Probab. 26(1) (1998), 149-186. · Zbl 0939.60066
[16] mish-munch-2 Yu. S. Mishura and E. Yu. Munchak, Rate of convergence of option prices by using the method of pseudomoments, Teor. Imovirnost. Mat. Stat. 92 (2015) 110-124; English transl. in Theor. Probability and Math. Statist. 92 (2016), 117-133. · Zbl 1345.60018
[17] mish-munch-3 Yu. S. Mishura and E. Yu. Munchak, Rate of convergence of option prices for approximations of the geometric Ornstein-Uhlenbeck process by Bernoulli jumps of prices on assets, Teor. Imovirnost. Mat. Stat. 93 (2015), 127-141; English transl. in Theor. Probability and Math. Statist. 93 (2016), 137-152. · Zbl 1415.91288
[18] paper4 Yu. Mishura, G. Rizhniak, and V. Zubchenko, European call option issued on a bond governed by a geometric or a fractional geometric Ornstein-Uhlenbeck process, Modern Stoch. Theory Appl. 1(1) (2014), 95-108. · Zbl 1336.60134
[19] NicolatoVenardos E. Nicolato and E. Venardos, Option pricing in stochastic volatility models of the Ornstein-Uhlenbeck type, Math. Finance 13 (2003), 445-466. · Zbl 1105.91020
[20] Nualart D. Nualart, The Malliavin Calculus and Related Topics, Second edition, Probability and Its Applications, Springer-Verlag, Berlin-Heidelberg, 2006. · Zbl 1099.60003
[21] NuaPar D. Nualart and E. Pardoux, Stochastic calculus with anticipating integrands, Probab. Theory Rel. Fields 78 (1988), no. 4, 535-581. · Zbl 0629.60061
[22] NunnoOksProske G. Di Nunno, B. ksendal, and F. Proske, Malliavin Calculus for L\'evy Processes with Applications to Finance, Springer Science & Business Media, New York, 2008.
[23] Ouknine Y. Ouknine, Fubini-type theorem for anticipating integrals, Random Oper. Stoch. Equ. 4 (1996), no. 4, 351-354. · Zbl 0877.60034
[24] OconeKaratzas D. L. Ocone and I. Karatzas, A generalized Clark representation formula, with application to optimal portfolios, Stoch. Stoch. Reports 34 (1991), 187-220. · Zbl 0727.60070
[25] PerSirMas J. Perell\'o, R. Sircar, and J. Masoliver, Option pricing under stochastic volatility: the exponential Ornstein-Uhlenbeck model, J. Stat. Mech. 1 (2008), P06010. · Zbl 1459.91201
[26] Sanz M. Sanz-Sole, Malliavin Calculus with Applications to Stochastic Partial Differential Equations, EPFL Press, Lausanne, 2005. · Zbl 1098.60050
[27] ShephardAndersen N. Shephard and T. G. Andersen, Handbook of Financial Time Series. Chapter: Stochastic Volatility: Origins and Overview, Springer, Berlin-Heidelberg, 2009, 233-254. · Zbl 1178.91233
[28] Shiryaev A. N. Shiryaev, Essentials of Stochastic Finance: Facts, Models, Theory, World Scientific, Singapore, 1999. · Zbl 0926.62100
[29] Shreve S. E. Shreve, Stochastic Calculus for Finance II. Continuous-Time Models, Springer-Verlag, New York, 2004. · Zbl 1068.91041
[30] Steins E. M. Stein and J. C. Stein, Stock price distributions with stochastic volatility: an analytic approach, Review Financial Studies, vol. 4(4), 1991, 727-752. · Zbl 1458.62253
[31] Wiggins J. Wiggins, Option values under stochastic volatility: Theory and empirical estimates, J. Financial Economics 19 (1987), 351-372.
[32] Wong B. Wong and C. C. Heyde, On changes of measure in stochastic volatility models, J. Appl. Math. Stoch. Anal. 2006 (2006), 1-13, Article ID 18130. · Zbl 1147.60321
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.