×

Convergence of the reach for a sequence of Gaussian-embedded manifolds. (English) Zbl 1434.60116

Authors’ abstract: Motivated by questions of manifold learning, we study a sequence of random manifolds, generated by embedding a fixed, compact manifold \(M\) into Euclidean spheres of increasing dimension via a sequence of Gaussian mappings. One of the fundamental smoothness parameters of manifold learning theorems is the reach, or critical radius, of \(M\). Roughly speaking, the reach is a measure of a manifold’s departure from convexity, which incorporates both local curvature and global topology. This paper develops limit theory for the reach of a family of random, Gaussian-embedded, manifolds, establishing both almost sure convergence for the global reach, and a fluctuation theory for both it and its local version. The global reach converges to a constant well known both in the reproducing kernel Hilbert space theory of Gaussian processes, as well as in their extremal theory.

MSC:

60G15 Gaussian processes
57N35 Embeddings and immersions in topological manifolds
60D05 Geometric probability and stochastic geometry
60G60 Random fields
60F05 Central limit and other weak theorems
60G12 General second-order stochastic processes

References:

[1] Adler, R.J., Taylor, J.E.: Random Fields and Geometry. Springer Monographs in Mathematics. Springer, New York (2007) · Zbl 1149.60003
[2] Amelunxen, D., Bürgisser, P.: Probabilistic analysis of the Grassmann condition number. arXiv:1112.2603
[3] Amenta, N; Bern, M, Surface reconstruction by Voronoi filtering, Discrete Comput. Geom., 22, 481-504, (1999) · Zbl 0939.68138 · doi:10.1007/PL00009475
[4] Anderson, T.W.: An Introduction to Multivariate Statistical Analysis. Wiley Series in Probability and Statistics, 3rd edn. Wiley, Hoboken (2003) · Zbl 1039.62044
[5] Billingsley, P.: Convergence of Probability Measures. Wiley Series in Probability and Statistics: Probability and Statistics, 2nd edn. Wiley, New York (1999) · Zbl 0944.60003 · doi:10.1002/9780470316962
[6] Boissonnat, J.-D., Chazal, F., Yvinec, M.: Computational geometry and topology for data analysis. Book in preparation. http://geometrica.saclay.inria.fr/team/Fred.Chazal/papers/CGLcourseNotes/main.pdf (2016)
[7] Cartwright, DI; Field, MJ, A refinement of the arithmetic mean-geometric mean inequality, Proc. Am. Math. Soc., 71, 36-38, (1978) · Zbl 0392.26010 · doi:10.1090/S0002-9939-1978-0476971-2
[8] Chazal, F; Lieutier, A, Smooth manifold reconstruction from noisy and non-uniform approximation with guarantees, Comput. Geom., 40, 156-170, (2008) · Zbl 1153.65316 · doi:10.1016/j.comgeo.2007.07.001
[9] Federer, H, Curvature measures, Trans. Am. Math. Soc., 93, 418-491, (1959) · Zbl 0089.38402 · doi:10.1090/S0002-9947-1959-0110078-1
[10] Gray, A.: Tubes. Advanced Book Program. Addison-Wesley Publishing Company, Redwood City (1990) · Zbl 0692.53001
[11] Hotelling, H, Tubes and spheres in \(n\)-spaces and a class of statistical problems, Am. J. Math., 61, 440-460, (1939) · JFM 65.0795.02 · doi:10.2307/2371512
[12] Johansen, S; Johnstone, IM, Hotelling’s theorem on the volume of tubes: some illustrations in simultaneous inference and data analysis, Ann. Statist., 18, 652-684, (1990) · Zbl 0723.62018 · doi:10.1214/aos/1176347620
[13] Kendall, M., Stuart, A.: The Advanced Theory of Statistics, Design and Analysis, and Time-Series, vol. 3, 3rd edn. Hafner Press [Macmillan Publishing Co., Inc.], New York (1976) · Zbl 0361.62001
[14] Kendall, M.G., Stuart, A.: The Advanced Theory of Statistics. Distribution Theory, vol. 1, 3rd edn. Hafner Publishing Co., New York (1969) · Zbl 0223.62001
[15] Krishnan, S.R., Taylor, J.E., Adler, R.J.: The intrinsic geometry of some random manifolds. arXiv:1512.05622 (2015) · Zbl 1366.57012
[16] Ledoux, M., Talagrand, M.: Probability in Banach spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Isoperimetry and Processes. Springer, Berlin (1991) · Zbl 0748.60004
[17] Lee, J.M.: Riemannian Manifolds, An Introduction to Curvature, Volume 176 of Graduate Texts in Mathematics, vol. 176. Springer, New York (1997) · Zbl 0905.53001
[18] Niyogi, P; Smale, S; Weinberger, S, A topological view of unsupervised learning from noisy data, SIAM J. Comput., 40, 646-663, (2011) · Zbl 1230.62085 · doi:10.1137/090762932
[19] Niyogi, P; Smale, S; Weinberger, S, Finding the homology of submanifolds with high confidence from random samples, Discrete Comput. Geom., 39, 419-441, (2008) · Zbl 1148.68048 · doi:10.1007/s00454-008-9053-2
[20] Olkin, I; Pratt, JW, Unbiased estimation of certain correlation coefficients, Ann. Math. Statist, 29, 201-211, (1958) · Zbl 0094.14403 · doi:10.1214/aoms/1177706717
[21] Smale, S; Iserles, A (ed.), Complexity theory and numerical analysis, No. 6, 523-551, (1997), Cambridge · Zbl 0883.65125
[22] Takemura, A; Kuriki, S, On the equivalence of the tube and Euler characteristic methods for the distribution of the maximum of Gaussian fields over piecewise smooth domains, Ann. Appl. Probab., 12, 768-796, (2002) · Zbl 1016.60042 · doi:10.1214/aoap/1026915624
[23] Takemura, A; Kuriki, S, Tail probability via the tube formula when the critical radius is zero, Bernoulli, 9, 535-558, (2003) · Zbl 1063.60078 · doi:10.3150/bj/1065444817
[24] Taylor, J; Takemura, A; Adler, RJ, Validity of the expected Euler characteristic heuristic, Ann. Probab., 33, 1362-1396, (2005) · Zbl 1083.60031 · doi:10.1214/009117905000000099
[25] Thäle, C, 50 years sets with positive reach—a survey, Surv. Math. Appl., 3, 123-165, (2008) · Zbl 1173.49039
[26] van der Vaart, A.W., Wellner, J.A.: Weak Convergence and Empirical Processes. Springer Series in Statistics. With Applications to Statistics. Springer, New York (1996) · Zbl 0862.60002
[27] Weyl, H, On the volume of tubes, Am. J. Math., 61, 461-472, (1939) · Zbl 0021.35503 · doi:10.2307/2371513
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.