×

Unbounded operators in Hilbert space, duality rules, characteristic projections, and their applications. (English) Zbl 1511.47030

Summary: Our main theorem is in the generality of the axioms of Hilbert space, and the theory of unbounded operators. Consider two Hilbert spaces whose intersection contains a fixed vector space \(\mathscr {D}\). In the case when \(\mathscr {D}\) is dense in one of the Hilbert spaces (but not necessarily in the other), we make precise an operator-theoretic linking between the two Hilbert spaces. No relative boundedness is assumed. Nonetheless, under natural assumptions (motivated by potential theory), we prove a theorem where a comparison between the two Hilbert spaces is made via a specific selfadjoint semibounded operator. Applications include physical Hamiltonians, both continuous and discrete (infinite network models), and the operator theory of reflection positivity.

MSC:

47B25 Linear symmetric and selfadjoint operators (unbounded)
46C05 Hilbert and pre-Hilbert spaces: geometry and topology (including spaces with semidefinite inner product)
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis

References:

[1] Arov, DZ; Dym, H, On three Krein extension problems and some generalizations, Integral Equ. Oper. Theory, 31, 1-91, (1998) · Zbl 0909.30030 · doi:10.1007/BF01203457
[2] Alpay, D; Jorgensen, P; Levanony, D, A class of Gaussian processes with fractional spectral measures, J. Funct. Anal., 261, 507-541, (2011) · Zbl 1229.60042 · doi:10.1016/j.jfa.2011.03.012
[3] Alpay, D; Jorgensen, P; Salomon, G, On free stochastic processes and their derivatives, Stoch. Process. Appl., 124, 3392-3411, (2014) · Zbl 1296.60181 · doi:10.1016/j.spa.2014.05.007
[4] Bezuglyi, S., Jorgensen, P.E.T.: Representations of Cuntz-Krieger relations, dynamics on Bratteli diagrams, and path-space measures. Trends in Harmonic Analysis and Its Applications, Contemp. Math. vol. 650, Am. Math. Soc., Providence, RI, pp. 57-88 (2015) · Zbl 1351.46064
[5] Mischa, C., Roberto C.: An Introduction to Functional Analysis, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc, New York: Translated from the Spanish by A. Torchinsky and A. González Villalobos, North-Holland Texts in Advanced Mathematics (1974) · Zbl 0277.46001
[6] Cho, I; Gillespie, T; Jorgensen, PET, Asymptotic free probability for arithmetic functions and factorization of Dirichlet series, Anal. Math. Phys., 6, 255-295, (2016) · Zbl 1353.05126 · doi:10.1007/s13324-015-0117-1
[7] Colombo, F; Sabadini, I, The \(F\)-functional calculus for unbounded operators, J. Geom. Phys., 86, 392-407, (2014) · Zbl 1440.47010 · doi:10.1016/j.geomphys.2014.09.002
[8] Doyle, P.G., Snell, J.L.: Random Walks and Electric Networks, Carus Mathematical Monographs, vol. 22. Mathematical Association of America, Washington, DC (1984) · Zbl 0583.60065
[9] Dunford, N., Schwartz, J.T.: Linear Operators. Part II, Wiley Classics Library, John Wiley & Sons Inc., New York, 1988, Spectral theory. Selfadjoint operators in Hilbert space, With the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1963 original, A Wiley-Interscience Publication
[10] Glimm, J., Jaffe, A.: Quantum Physics: A Functional Integral Point of View, 2nd edn. Springer-Verlag, New York (1987) · Zbl 0461.46051 · doi:10.1007/978-1-4612-4728-9
[11] Hadwin, D; Shen, J; Wu, W; Yuan, W, Relative commutant of an unbounded operator affiliated with a finite von Neumann algebra, J. Oper. Theory, 75, 209-223, (2016) · Zbl 1399.47113 · doi:10.7900/jot.2015jan23.2065
[12] Hutchinson, JE, Fractals and self-similarity, Indiana Univ. Math. J., 30, 713-747, (1981) · Zbl 0598.28011 · doi:10.1512/iumj.1981.30.30055
[13] Jorgensen, P.E.T., Ólafsson, G.: Unitary representations and Osterwalder-Schrader duality. In: The mathematical Legacy of Harish-Chandra (Baltimore, MD, : Proceeding of Symposium Pure Math., vol. 68, Amer. Math. Soc. Providence, RI Vol. 2000, pp. 333-401 (1998) · Zbl 0959.22008
[14] Jørgensen, PET, Essential self-adjointness of semibounded operators, Math. Ann., 237, 187-192, (1978) · Zbl 0386.47010 · doi:10.1007/BF01351681
[15] Jørgensen, PET, Unbounded operators: perturbations and commutativity problems, J. Funct. Anal., 39, 281-307, (1980) · Zbl 0458.47034 · doi:10.1016/0022-1236(80)90030-0
[16] Jorgensen, PET, Essential self-adjointness of the graph-Laplacian, J. Math. Phys., 49, 073510-073533, (2008) · Zbl 1152.81496 · doi:10.1063/1.2953684
[17] Jorgensen, PET; Pearse, EPJ, A Hilbert space approach to effective resistance metric, Complex Anal. Oper. Theory, 4, 975-1013, (2010) · Zbl 1209.05144 · doi:10.1007/s11785-009-0041-1
[18] Jorgensen, PET; Pearse, EPJ, Gel’ fand triples and boundaries of infinite networks, N. Y. J. Math., 17, 745-781, (2011) · Zbl 1241.05080
[19] Jorgensen, PET; Pearse, EPJ, Spectral reciprocity and matrix representations of unbounded operators, J. Funct. Anal., 261, 749-776, (2011) · Zbl 1257.47025 · doi:10.1016/j.jfa.2011.01.016
[20] Jorgensen, PET; Pearse, EPJ, A discrete Gauss-Green identity for unbounded Laplace operators, and the transience of random walks, Israel J. Math., 196, 113-160, (2013) · Zbl 1275.05054 · doi:10.1007/s11856-012-0165-2
[21] Jorgensen, PET; Pearse, EPJ, Spectral comparisons between networks with different conductance functions, J. Oper. Theory, 72, 71-86, (2014) · Zbl 1389.47069 · doi:10.7900/jot.2012oct05.1978
[22] Jorgensen, PET; Pearse, EPJ, Symmetric pairs and self-adjoint extensions of operators, with applications to energy networks, Complex Anal. Oper. Theory, 10, 1535-1550, (2016) · Zbl 1353.05080 · doi:10.1007/s11785-015-0522-3
[23] Jorgensen, PET; Pearse, EPJ, Symmetric pairs of unbounded operators in Hilbert space, and their applications in mathematical physics, Math. Phys. Anal. Geom., 20, 14, (2017) · Zbl 1424.47055 · doi:10.1007/s11040-017-9245-1
[24] Jorgensen, P; Pedersen, S; Tian, F, Restrictions and extensions of semibounded operators, Complex Anal. Oper. Theory, 8, 591-663, (2014) · Zbl 1327.47017 · doi:10.1007/s11785-012-0241-y
[25] Jorgensen, P; Tian, F, Infinite networks and variation of conductance functions in discrete Laplacians, J. Math. Phys., 56, 043506, (2015) · Zbl 1328.35257 · doi:10.1063/1.4918646
[26] Kempf, A; Chatwin-Davies, A; Martin, RTW, A fully covariant information-theoretic ultraviolet cutoff for scalar fields in expanding Friedmann Robertson Walker spacetimes, J. Math. Phys., 54, 022301-022322, (2013) · Zbl 1280.81101 · doi:10.1063/1.4790482
[27] Kreĭn, MG; Langer, H, On some extension problems which are closely connected with the theory of Hermitian operators in a space \(\varPi _{κ }\). III. indefinite analogues of the hamburger and Stieltjes moment problems. part II, Beiträge Anal., 1980, 27-45, (1981) · Zbl 0507.47022
[28] Kreĭn, MG, On Hermitian operators with directed functionals, Akad. Nauk Ukrain. RSR. Zbirnik Prac’ Inst. Mat., 1948, 83-106, (1948)
[29] Kreĭn, MG, The fundamental propositions of the theory of representations of Hermitian operators with deficiency index \((m, m)\), Ukrain. Mat. Žurnal, 1, 3-66, (1949)
[30] Martin, RTW, Extensions of symmetric operators I: the inner characteristic function case, Concr. Oper., 2, 53-97, (2015) · Zbl 1343.47030
[31] Much, A, Self-adjointness of deformed unbounded operators, J. Math. Phys., 56, 093501-093513, (2015) · Zbl 1323.47024 · doi:10.1063/1.4929662
[32] Nathanson, ES; Jørgensen, PET, A global solution to the Schrödinger equation: from Henstock to Feynman, J. Math. Phys., 56, 092102-092115, (2015) · Zbl 1322.81031 · doi:10.1063/1.4930250
[33] Park, DK, Green’s-function approach to two- and three-dimensional delta-function potentials and application to the spin-\(1/2\) Aharonov-Bohm problem, J. Math. Phys., 36, 5453-5464, (1995) · Zbl 0865.46057 · doi:10.1063/1.531271
[34] Powers, RT, Resistance inequalities for the isotropic Heisenberg ferromagnet, J. Math. Phys., 17, 1910-1918, (1976) · doi:10.1063/1.522816
[35] Reed, Michael, Simon, Barry: Methods of Modern Mathematical Physics. I. Functional Analysis. Academic Press, New York-London (1972) · Zbl 0242.46001
[36] Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1987) · Zbl 0925.00005
[37] Rudin, W.: Functional Analysis. International Series in Pure and Applied Mathematics, 2nd edn. McGraw-Hill Inc, New York (1991) · Zbl 0867.46001
[38] Schmüdgen, K.: Unbounded Self-Adjoint Operators on Hilbert Space, Graduate Texts in Mathematics, vol. 265. Springer, Dordrecht (2012) · Zbl 1257.47001 · doi:10.1007/978-94-007-4753-1
[39] Stone, MH, On unbounded operators in Hilbert space, J. Indian Math. Soc. (N.S.), 15, 155-192, (1952) · Zbl 0047.11102
[40] Neumann, J, Über funktionen von funktionaloperatoren, Ann. Math., 32, 191-226, (1931) · Zbl 0002.26703 · doi:10.2307/1968185
[41] Voiculescu, D-V, Free probability for pairs of faces I, Commun. Math. Phys., 332, 955-980, (2014) · Zbl 1317.46051 · doi:10.1007/s00220-014-2060-7
[42] Zhang, F. (ed.): The Schur Complement and Its Applications, Numerical Methods and Algorithms, vol. 4. Springer-Verlag, New York (2005) · Zbl 1075.15002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.