×

Metastability for general dynamics with rare transitions: escape time and critical configurations. (English) Zbl 1327.82058

Summary: Metastability is a physical phenomenon ubiquitous in first order phase transitions. A fruitful mathematical way to approach this phenomenon is the study of rare transitions Markov chains. For Metropolis chains associated with statistical mechanics systems, this phenomenon has been described in an elegant way in terms of the energy landscape associated to the Hamiltonian of the system. In this paper, we provide a similar description in the general rare transitions setup. Beside their theoretical content, we believe that our results are a useful tool to approach metastability for non-Metropolis systems such as Probabilistic Cellular Automata.

MSC:

82C26 Dynamic and nonequilibrium phase transitions (general) in statistical mechanics
60K35 Interacting random processes; statistical mechanics type models; percolation theory

References:

[1] Aldous, D.J., Brown, M.: Inequalities for rare events in time-reversible Markov chains. I. In: Stochastic Inequalities (Seattle, WA, 1991). IMS Lecture Notes Monograph Series, vol. 22, pp. 1-16. Institute of Mathematical Statistics, Hayward, CA (1992) · Zbl 1400.60096
[2] Aldous, D.J., Brown, M.: Inequalities for rare events in time-reversible Markov chains. II. Stoch. Process. Appl. 44(1), 15-25 (1993) · Zbl 0812.60054 · doi:10.1016/0304-4149(93)90035-3
[3] Bovier, A., Eckhoff, M., Gayrard, V., Klein, M.: Metastability and small eigenvalues in Markov chains. J. Phys. A 33(46), L447-L451 (2000) · Zbl 0970.82035 · doi:10.1088/0305-4470/33/46/102
[4] Bovier, A., Eckhoff, M., Gayrard, V., Klein, M.: Metastability in stochastic dynamics of disordered mean-field models. Probab. Theory Relat. Fields 119(1), 99-161 (2001) · Zbl 1012.82015 · doi:10.1007/PL00012740
[5] Bovier, A., Eckhoff, M., Gayrard, V., Klein, M.: Metastability in reversible diffusion processes. I. Sharp asymptotics for capacities and exit times. J. Eur. Math. Soc. (JEMS) 6(4), 399-424 (2004) · Zbl 1076.82045 · doi:10.4171/JEMS/14
[6] Beltrán, J., Landim, C.: Metastability of reversible finite state Markov processes. Stoch. Process. Appl. 121(8), 1633-1677 (2011) · Zbl 1223.60060 · doi:10.1016/j.spa.2011.03.008
[7] Beltrán, J., Landim, C.: Tunneling and metastability of continuous time Markov chains II, the nonreversible case. J. Stat. Phys. 149(4), 598-618 (2012) · Zbl 1260.82063 · doi:10.1007/s10955-012-0617-4
[8] Benois, O., Landim, C., Mourragui, M.: Hitting times of rare events in Markov chains. J. Stat. Phys. 153(6), 967-990 (2013) · Zbl 1285.82033 · doi:10.1007/s10955-013-0875-9
[9] Bovier, A.: Metastability: a potential theoretic approach. In: International Congress of Mathematicians, vol. III, pp. 499-518. European Mathematical Society, Zürich (2006) · Zbl 1099.60052
[10] Catoni, O.: Simulated annealing algorithms and Markov chains with rare transitions. In: Séminaire de Probabilités, XXXIII. Lecture Notes in Mathematics, vol. 1709, pp. 69-119. Springer, Berlin (1999) · Zbl 0944.90053
[11] Catoni, O., Cerf, R.: The exit path of a Markov chain with rare transitions. ESAIM Probab. Stat. 1, 95-144 (1995/97) · Zbl 0869.60063
[12] Cassandro, M., Galves, A., Olivieri, E., Vares, M.E.: Metastable behavior of stochastic dynamics: a pathwise approach. J. Stat. Phys. 35(5-6), 603-634 (1984) · Zbl 0591.60080 · doi:10.1007/BF01010826
[13] Cirillo, E.N.M., Louis, P.-Y., Ruszel, W.M., Spitoni, C.: Effect of self-interaction on the phase diagram of a Gibbs-like measure derived by a reversible Probabilistic Cellular Automata. Chaos Solitons Fractals 64(SI), 36-47 (2014) · Zbl 1348.37021 · doi:10.1016/j.chaos.2013.12.001
[14] Cirillo, E.N.M., Nardi, F.R.: Metastability for a stochastic dynamics with a parallel heat bath updating rule. J. Stat. Phys. 110(1-2), 183-217 (2003) · Zbl 1035.82029 · doi:10.1023/A:1021070712382
[15] Cirillo, E.N.M., Nardi, F.R.: Relaxation height in energy landscapes: an application to multiple metastable states. J. Stat. Phys. 150(6), 1080-1114 (2013) · Zbl 1273.82009 · doi:10.1007/s10955-013-0717-9
[16] Cirillo, E.N.M., Nardi, F.R., Polosa, A.D.: Magnetic order in the Ising model with parallel dynamics. Phys. Rev. E 64(5 pt 2), 057103 (2001) · doi:10.1103/PhysRevE.64.057103
[17] Cirillo, E.N.M., Nardi, F.R., Spitoni, C.: Competitive nucleation in reversible probabilistic cellular automata. Phys. Rev. E (3) 78(4), 040601 (2008) · doi:10.1103/PhysRevE.78.040601
[18] Cirillo, E.N.M., Nardi, F.R., Spitoni, C.: Metastability for reversible probabilistic cellular automata with self-interaction. J. Stat. Phys. 132(3), 431-471 (2008) · Zbl 1207.82039 · doi:10.1007/s10955-008-9563-6
[19] Cirillo, E.N.M. Nardi, F.R., Spitoni, C.: Competitive nucleation in metastable systems. In: Applied and Industrial Mathematics in Italy III. Series on Advances in Mathematics for Applied Sciences, vol. 82, pp. 208-219. World Science Publishing, Hackensack, NJ (2010) · Zbl 1203.82032
[20] Cirillo, E.N.M., Nardi, F.R., Sohier, J.: A comparison between different cycle decompositions for metropolis dynamics. Markov Process. Relat. Fields (2015) · Zbl 1356.60110
[21] de Carlo, Gabrielli, D.: A non reversible conservative kawasaki dynamics. Private communication, work in progress (2015) · Zbl 0591.60080
[22] den Hollander, F., Nardi, F.R., Troiani, A.: Kawasaki dynamics with two types of particles: stable/metastable configurations and communication heights. J. Stat. Phys. 145(6), 1423-1457 (2011) · Zbl 1231.82019 · doi:10.1007/s10955-011-0370-0
[23] den Hollander, F., Nardi, F.R., Troiani, A.: Kawasaki dynamics with two types of particles: critical droplets. J. Stat. Phys. 149(6), 1013-1057 (2012) · Zbl 1263.82035 · doi:10.1007/s10955-012-0637-0
[24] den Hollander, F., Nardi, F.R., Troiani, A.: Metastability for Kawasaki dynamics at low temperature with two types of particles. Electron. J. Probab. 17(2), 26 (2012) · Zbl 1246.60119
[25] Dai Pra, P., Scoppola, B., Scoppola, E.: Fast mixing for the low temperature 2D ising model through irreversible parallel dynamics. J. Stat. Phys. 159(1), 1-20 (2015) · Zbl 1317.82027 · doi:10.1007/s10955-014-1180-y
[26] Fernandez, R., Manzo, F., Nardi, F.R., Scoppola, E., Sohier. J.: Conditioned, quasi-stationary, restricted measures and metastability. Ann. Appl. Probab. (2015) · Zbl 1339.60110
[27] Fernandez, R., Manzo, F., Nardi, F.R., Scoppola, E.: Asymptotically exponential hitting times and metastability: a pathwise approach without reversibility. Electron. J. Probab. (2015) · Zbl 1329.60269
[28] Grinstein, G., Jayaprakash, C., He, Yu.: Statistical mechanics of probabilistic cellular automata. Phys. Rev. Lett. 55(23), 2527-2530 (1985) · doi:10.1103/PhysRevLett.55.2527
[29] Gaudillière, A., Landim, C.: A Dirichlet principle for non reversible Markov chains and some recurrence theorems. Probab. Theory Relat. Fields 158(1-2), 55-89 (2014) · Zbl 1295.60087 · doi:10.1007/s00440-012-0477-5
[30] Landim, C.: Metastability for a non-reversible dynamics: the evolution of the condensate in totally asymmetric zero range processes. Commun. Math. Phys. 330(1), 1-32 (2014) · Zbl 1305.82045 · doi:10.1007/s00220-014-2072-3
[31] Manzo, F., Nardi, F.R., Olivieri, E., Scoppola, E.: On the essential features of metastability: tunnelling time and critical configurations. J. Stat. Phys. 115(1-2), 591-642 (2004) · Zbl 1157.82381 · doi:10.1023/B:JOSS.0000019822.45867.ec
[32] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087-1092 (1953) · Zbl 1431.65006 · doi:10.1063/1.1699114
[33] Oliveira, R.I.: Mean field conditions for coalescing random walks. Ann. Probab. 41(5), 3420-3461 (2013) · Zbl 1285.60094 · doi:10.1214/12-AOP813
[34] Olivieri, E., Scoppola, E.: Markov chains with exponentially small transition probabilities: first exit problem from a general domain. I. The reversible case. J. Stat. Phys. 79(3-4), 613-647 (1995) · Zbl 1081.60541 · doi:10.1007/BF02184873
[35] Olivieri, E., Scoppola, E.: Markov chains with exponentially small transition probabilities: first exit problem from a general domain. II. The general case. J. Stat. Phys. 84(5-6), 987-1041 (1996) · Zbl 1081.60542 · doi:10.1007/BF02174126
[36] Olivieri, E., Vares, M.E.: Encyclopedia of Mathematics and Its Applications. Large deviations and metastability, vol. 100. Cambridge University Press, Cambridge (2005)
[37] Trouvé, A.: Partially parallel simulated annealing: low and high temperature approach of the invariant measure. In: Applied Stochastic Analysis (New Brunswick, NJ, 1991). Lecture Notes in Control and Information Science, vol. 177, pp. 262-278. Springer, Berlin (1992)
[38] Trouvé, A.: Cycle decompositions and simulated annealing. SIAM J. Control Optim. 34(3), 966-986 (1996) · Zbl 0852.60031 · doi:10.1137/S0363012993258586
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.