×

Poisson derivations of a semiclassical limit of a family of quantum second Weyl algebras. (English) Zbl 07787758

The authors continue their recent research [S. Launois and I. Oppong, Bull. Sci. Math. 184, Article ID 103257, 43 p. (2023; Zbl 1529.16025)], where they describe deformations \(\mathcal A_{\alpha,\beta}\) of the second Weyl algebra and compute their derivations. More precisely, they identify the semiclassical limits \(\mathcal A_{\alpha,\beta}\) of these deformations and calculate their Poisson derivations. As a consequence, it turns out that the first Hochschild cohomology group \(\mathrm{HH^1}(\mathcal A_{\alpha,\beta})\) is isomorphic to the first Poisson cohomology group \(\mathrm{HP^1}(\mathcal A_{\alpha,\beta})\). The authors raise the question whether this is also true for higher cohomology groups.

MSC:

16S30 Universal enveloping algebras of Lie algebras
16T20 Ring-theoretic aspects of quantum groups
17B37 Quantum groups (quantized enveloping algebras) and related deformations
53D55 Deformation quantization, star products

Citations:

Zbl 1529.16025

References:

[1] Belov-Kanel, A.; Kontsevich, M., Automorphisms of the Weyl algebra. Lett. Math. Phys., 181-199 (2005) · Zbl 1081.16031
[2] Brown, K. A.; Goodearl, K. R., Lectures on Algebraic Quantum Groups. Advanced Courses in Mathematics CRM Barcelona (2002), Birkhäuser: Birkhäuser Basel · Zbl 1027.17010
[3] Cauchon, G., Effacement des dérivations et spectres premiers des algèbres quantiques. J. Algebra, 476-518 (2003) · Zbl 1017.16017
[4] Cho, E.-H.; Oh, S.-Q., Semiclassical limits of Ore extensions and a Poisson generalized Weyl algebra. Lett. Math. Phys., 7, 997-1009 (2016) · Zbl 1356.16019
[5] Dumas, F., Rational equivalence for Poisson polynomial algebras. Lect. Notes (December 2011), Available at
[6] Fryer, S., The prime spectrum of quantum \(S L_3\) and the Poisson prime spectrum of its semiclassical limit. Trans. London Math. Soc., 1, 1-29 (2017) · Zbl 1408.17005
[7] Goodearl, K. R., Semiclassical limits of quantized coordinate rings, 165-204 · Zbl 1202.16027
[8] Goodearl, K. R., A Dixmier-Moeglin equivalence for Poisson algebras with torus actions. Contemp. Math., 131-154 (2006) · Zbl 1147.17017
[9] Goodearl, K. R.; Launois, S., The Dixmier-Moeglin equivalence and a Gel’fand-Kirillov problem for Poisson polynomial algebras. Bull. Soc. Math. Fr., 1-39 (2011) · Zbl 1226.17016
[10] Goodearl, K. R.; Letzter, S., Semiclassical limits of quantum affine spaces. Proc. Edinb. Math. Soc., 387-407 (2009) · Zbl 1184.16037
[11] Goodearl, K. R.; Yakimov, M., Cluster algebra structures on Poisson nilpotent algebras. Mem. Am. Math. Soc., 1445 (2023) · Zbl 1535.13001
[12] Kitchin, A. P., Derivations of quantum and involution generalized Weyl algebras. J. Algebra Appl. (2023)
[13] Launois, S.; Lecoutre, C., Poisson deleting derivations algorithm and Poisson spectrum. Commun. Algebra, 1294-1313 (2017) · Zbl 1419.16020
[14] Launois, S.; Lenagan, T. H., The first Hochschild cohomology group of quantum matrices and the quantum special linear group. J. Noncommut. Geom., 281-309 (2007) · Zbl 1137.16015
[15] Launois, S.; Lopes, S. A., Automorphisms and derivations of \(U_q(s l_4^+)\). J. Pure Appl. Algebra, 1, 249-264 (2007) · Zbl 1127.17017
[16] Launois, S.; Oppong, I., Derivations of a family of quantum second Weyl algebras. Bull. Sci. Math. (2023) · Zbl 1529.16025
[17] Loose, F., Symplectic algebras and Poisson algebras. Commun. Algebra, 2395-2416 (1993) · Zbl 0799.58029
[18] Oh, S.-Q., Poisson polynomial rings. Commun. Algebra, 2395-2416 (1993)
[19] Oppong, I., A quantum deformation of the second Weyl algebra: its derivations and Poisson derivations (2021), University of Kent, Available at
[20] Osborn, J. M.; Passman, D., Derivations of skew polynomial rings. J. Algebra, 1265-1277 (2006)
[21] Tang, X., Derivations of the two-parameter quantized enveloping algebra. Commun. Algebra, 4602-4621 (2013) · Zbl 1281.17018
[22] Zhong, Y. Y.; Tang, X. M., Derivations of the positive part of the two-parameter quantum group of type G2. Acta Math. Sin. Engl. Ser., 1471-1484 (2021) · Zbl 1516.17019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.