×

Topology optimization of material nonlinear continuum structures under stress constraints. (English) Zbl 1506.74277

Summary: This paper proposes a methodology to extend the bi-directional evolutionary structural optimization (BESO) method for compliance minimization (stiffness maximization) design of material nonlinear continuum structures subject to both constraints on volume fraction and maximum von Mises stress. BESO method based on discrete variables can effectively avoid the well-known stress singularity problem in density-based methods with low density elements. The aggregated \(p\)-norm global stress measure is adopted to approximate the maximum von Mises stress. The conventional compliance design objective is augmented with \(p\)-norm stress measures by introducing one Lagrange multiplier. The Lagrange multiplier is employed to yield compromised designs of compliance and the \(p\)-norm stress. A scheme is developed for the determination of the Lagrange multiplier so that the maximum von Mises stress could be effectively constrained. The update of the binary topological design variables lies in the sensitivity numbers derived using the adjoint method. As for the highly nonlinear stress behavior, both topological variables and sensitivity numbers are filtered to stabilize the optimization procedure. The filtered sensitivity numbers are further stabilized with their historical information. A series of comparison studies has been conducted to validate the effectiveness of the method on several benchmark design problems.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Bendsøe, M. P.; Kikuchi, N., Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Engrg., 71, 2, 197-224 (1988) · Zbl 0671.73065
[2] Bendsøe, M. P.; Sigmund, O., Topology Optimization: Theory, Methods and Applications (2003), Springer: Springer Berlin · Zbl 1059.74001
[3] Deaton, J. D.; Grandhi, R. V., A survey of structural and multidisciplinary continuum topology optimization: post 2000, Struct. Multidiscip. Optim., 49, 1, 1-38 (2014)
[4] Huang, X.; Xie, Y. M., Evolutionary Topology Optimization of Continuum Structures: Methods and Applications (2010), Wiley: Wiley Chichester · Zbl 1279.90001
[5] Zhu, J.; Zhang, W.; Xia, L., Topology optimization in aircraft and aerospace structures design, Arch. Comput. Methods Eng., 23, 4, 595-622 (2016) · Zbl 1360.74128
[6] Li, Z.; Shi, T.; Xia, Q., Eliminate localized eigenmodes in level set based topology optimization for the maximization of the first eigenfrequency of vibration, Adv. Eng. Softw., 107, 59-70 (2017)
[7] Wei, P.; Wang, M. Y., Piecewise constant level set method for structural topology optimization, Internat. J. Numer. Methods Engrg., 78, 4, 379-402 (2009) · Zbl 1183.74222
[8] Xia, L.; Xia, Q.; Huang, X.; Xie, Y. M., Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review, Arch. Comput. Methods Eng., 25, 2, 437-478 (2018) · Zbl 1392.74074
[9] Xu, B.; Han, Y. S.; Zhao, L.; Xie, Y. M., Topology optimization of continuum structures for natural frequencies considering casting constraints, Eng. Optimiz., 51, 6, 941-960 (2019)
[10] Han, Y. S.; Xu, B.; Zhao, L.; Xie, Y. M., Topology optimization of continuum structures under hybrid additive-subtractive manufacturing constraints, Struct. Multidiscip. Optim., 60, 6, 2571-2595 (2019)
[11] Han, Y. S.; Xu, B.; Wang, Q.; Liu, Y. H., Bi-directional evolutionary topology optimization of continuum structures subjected to inertial loads, Adv. Eng. Softw., 365, Article 102897 pp. (2020)
[12] Duysinx, P.; Bendsøe, M. P., Topology optimization of continuum structures with local stress constraints, Internat. J. Numer. Methods Engrg., 43, 8, 1453-1478 (1998) · Zbl 0924.73158
[13] Le, C.; Norato, J.; Bruns, T.; Ha, C.; Tortorelli, D., Stress-based topology optimization for continua, Struct. Multidiscip. Optim., 41, 4, 605-620 (2010)
[14] Cheng, G.; Guo, X., Epsilon-relaxed approach in structural topology optimization, Struct. Multidiscip. Optim., 13, 4, 258-266 (1997)
[15] Bruggi, M., On an alternative approach to stress constraints relaxation in topology optimization, Struct. Multidiscip. Optim., 36, 125-141 (2008) · Zbl 1273.74397
[16] Bruggi, M.; Duysinx, P., Topology optimization for minimum weight with compliance and stress constraints, Struct. Multidiscip. Optim., 46, 3, 369-384 (2012) · Zbl 1274.74219
[17] Yang, R.; Chen, C., Stress-based topology optimization, Struct. Multidiscip. Optim., 12, 2, 98-105 (1996)
[18] Xia, L.; Zhang, L.; Xia, Q.; Shi, T. L., Stress-based topology optimization using bi-directional evolutionary structural optimization method, Comput. Methods Appl. Mech. Engrg., 333, 356-370 (2018) · Zbl 1440.74322
[19] Zhao, F.; Xia, L.; Lai, W. X.; Xia, Q.; Shi, T. L., Evolutionary topology optimization of continuum structures with stress constraints, Struct. Multidiscip. Optim., 59, 647-658 (2019)
[20] Svärd, H., Interior value extrapolation: a new method for stress evaluation during topology optimization, Struct. Multidiscip. Optim., 51, 3, 613-629 (2015)
[21] Bruggi, M., Topology optimization with mixed finite elements on regular grids, Comput. Methods Appl. Mech. Engrg., 305, 133-153 (2016) · Zbl 1425.74372
[22] Yang, R.; Chen, C., Stress-based topology optimization, Struct. Multidiscip. Optim., 12, 98-105 (1996)
[23] Luo, Y.; Wang, M. Y.; Kang, Z., An enhanced aggregation method for topology optimization with local stress constraints, Comput. Methods Appl. Mech. Engrg., 254, 31-41 (2013) · Zbl 1297.74098
[24] Zhou, M.; Sigmund, O., On fully stressed design and p-norm measures in structural optimization, Struct. Multidiscip. Optim., 56, 3, 731-736 (2017)
[25] Xie, Y. M.; Steven, G. P., A simple evolutionary procedure for structural optimization, Comput. Struct., 49, 885-896 (1993)
[26] Huang, X.; Xie, Y. M., Convergent and mesh-independent solutions for bi-directional evolutionary structural optimization method, Finite Elem. Anal. Des., 43, 1039-1049 (2007)
[27] Fritzen, F.; Xia, L.; Leuschner, M.; Breitkopf, P., Topology optimization of multiscale elastoviscoplastic structures, Internat. J. Numer. Methods Engrg., 106, 6, 430-453 (2016) · Zbl 1352.74239
[28] Xia, L.; Fritzen, F.; Breitkopf, P., Evolutionary topology optimization of elastoplastic structures, Struct. Multidiscip. Optim., 55, 2, 569-581 (2017)
[29] Xia, L.; Da, D.; Yvonnet, J., Topology optimization for maximizing the fracture resistance of quasi-brittle composites, Comput. Methods Appl. Mech. Engrg., 332, 234-254 (2018) · Zbl 1439.74304
[30] Bruns, T.; Tortorelli, D., An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms, Internat. J. Numer. Methods Engrg., 57, 10, 1413-1430 (2003) · Zbl 1062.74589
[31] Buhl, T.; Pedersen, C.; Sigmund, O., Stiffness design of geometrically nonlinear structures using topology optimization, Struct. Multidiscip. Optim., 19, 2, 93-104 (2000)
[32] Gea, H.; Luo, J., Topology optimization of structures with geometrical nonlinearities, Comput. Struct., 79, 20-21, 1977-1985 (2001)
[33] Luo, Y.; Wang, M.; Kang, Z., Topology optimization of geometrically nonlinear structures based on an additive hyperelasticity technique, Comput. Methods Appl. Mech. Engrg., 286, 422-441 (2015) · Zbl 1423.74754
[34] Pedersen, C.; Buhl, T.; Sigmund, O., Topology synthesis of large-displacement compliant mechanisms, Internat. J. Numer. Methods Engrg., 50, 12, 2683-2705 (2001) · Zbl 0988.74055
[35] Wang, F.; Lazarov, B.; Sigmund, O.; Jensen, J., Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems, Comput. Methods Appl. Mech. Engrg., 276, 453-472 (2014) · Zbl 1423.74768
[36] Yoon, G.; Kim, Y., Element connectivity parameterization for topology optimization of geometrically nonlinear structures, Int. J. Solids Struct., 42, 7, 1983-2009 (2005) · Zbl 1111.74035
[37] Bendsøe, M.; Guedes, J.; Plaxton, S.; Taylor, J., Optimization of structure and material properties for solids composed of softening material, Int. J. Solids Struct., 33, 12, 1799-1813 (1996) · Zbl 0919.73114
[38] Maute, K.; Schwarz, S.; Ramm, E., Adaptive topology optimization of elastoplastic structures, Struct. Optim., 15, 2, 81-91 (1998)
[39] Schwarz, S.; Maute, K.; Ramm, E., Topology and shape optimization for elastoplastic structural response, Comput. Methods Appl. Mech. Engrg., 190, 15-17, 2135-2155 (2001) · Zbl 1067.74052
[40] Yoon, G.; Kim, Y., Topology optimization of material-nonlinear continuum structures by the element connectivity parameterization, Internat. J. Numer. Methods Engrg., 69, 10, 2196-2218 (2007) · Zbl 1194.74278
[41] Yuge, K.; Kikuchi, N., Optimization of a frame structure subjected to a plastic deformation, Struct. Optim., 10, 3-4, 197-208 (1995)
[42] Yuge, K.; Iwai, N.; Kikuchi, N., Optimization of 2-D structures subjected to nonlinear deformations using the homogenization method, Struct. Optim., 17, 4, 286-299 (1999)
[43] Huang, X.; Xie, Y. M., Topology optimization of nonlinear structures under displacement loading, Eng. Struct., 30, 7, 2057-2068 (2008)
[44] Huang, X.; Xie, Y. M.; Lu, G., Topology optimization of energy-absorbing structures, Int. J. Crashworthiness, 12, 6, 663-675 (2007)
[45] Jung, D.; Gea, H., Topology optimization of nonlinear structures, Finite Elem. Anal. Des., 40, 11, 1417-1427 (2004)
[46] Buhl, T.; Pedersen, C. B.W.; Sigmund, O., Stiffness design of geometrically nonlinear structures using topology optimization, Struct. Multidiscip. Optim., 19, 93-104 (2000)
[47] Burns, T. E.; Tortorelli, D. A., An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms, Internat. J. Numer. Methods Engrg., 57, 1413-1430 (2003) · Zbl 1062.74589
[48] Capasso, G.; Morlier, J.; Charlotte, M.; Coniglio, S., Stress-based topology optimization of compliant mechanisms using nonlinear mechanics, Mech. Ind., 21, 3, 304 (2020)
[49] Silva, G. A.; Beck, A. T.; Sigmund, O., Topology optimization of compliant mechanisms considering stress constraints, manufacturing uncertainty and geometric nonlinearity, Comput. Methods Appl. Mech. Engrg., 365, Article 112972 pp. (2020) · Zbl 1442.74165
[50] Leon, D. M.; Gonçalves, J. F.; Souza, C. E., Stress-based topology optimization of compliant mechanisms design using geometrical and material nonlinearities, Struct. Multidiscip. Optim. (2020)
[51] Seung, J. M.; Gil, Y. H., A newly developed qp-relaxation method for element connectivity parameterization to achieve stress-based topology optimization for geometrically nonlinear structures, Comput. Methods Appl. Mech. Engrg., 265, 226-241 (2013) · Zbl 1286.74076
[52] Xu, B.; Han, Y. S.; Zhao, L., Bi-directional evolutionary topology optimization of geometrically nonlinear continuum structures with stress constraints, Appl. Math. Model., 80, 771-791 (2020) · Zbl 1481.74628
[53] Bathe, K. J., Finite Element Procedures (1996), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ
[54] Owen, D. R.J.; Hinton, E., Finite Elements in Plasticity: Theory and Practice (1980), Pineridge Press: Pineridge Press Swansea, U.K. · Zbl 0482.73051
[55] P. Duysinx, O. Sigmund, New development in handling stress constraints in optimal material distribution, in: Proc. 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. A Collection of Technical Papers (Held in St. Louis, Missouri), Vol. 3, 1998, pp. 1501-1509.
[56] Huang, X.; Xie, Y. M., Evolutionary topology optimization of continuum structures with an additional displacement constraint, Struct. Multidiscip. Optim., 40, 409-416 (2010) · Zbl 1274.74343
[57] Zuo, Z. H.; Xie, Y. M.; Huang, X., Evolutionary topology optimization of structures with multiple displacement and frequency constraints, Adv. Struct. Eng., 15, 2, 359-372 (2012)
[58] Luo, Y. J.; Bao, J. W., A material-field series-expansion method for topology optimization of continuum structures, Comput. Struct., 225, Article 106122 pp. (2019)
[59] Luo, Y. J.; Xing, J.; Kang, Z., Topology optimization using material-field series expansion and Kriging-based algorithm: An effective non-gradient method, Comput. Methods Appl. Mech. Engrg., 364, Article 112966 pp. (2020) · Zbl 1442.74174
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.