×

Flow by Gauss curvature to the \(L_p\) dual Minkowski problem. (English) Zbl 1540.53113

The theory nowadays known as Brunn-Minkowski theory concerns the study of geometric functionals defined from convex bodies. A Minkowski problem is a characterization problem for a geometric measure generated by convex bodies. Its solution amounts to solving a degenerate fully nonlinear partial differential equation, see for instance [Y. Huang et al., Acta Math. 216, No. 2, 325–388 (2016; Zbl 1372.52007)].
Let \(\mathcal M_0\) be a smooth closed uniformly convex hypersurface in \(\mathbb R^{n+1}\) enclosing the origin. Consider the Gauss curvature flow \[ \begin{cases} \partial_t X(x,t)=-f(v)r^{\alpha}K(x,t)v,\\ X(x,0)=X_0(x), \end{cases} \] where
1.
\(K(\cdot,t)\) is the Gauss curvature of the hypersurface \(\mathcal M_t\) parameterized by \(X(\cdot,t):\mathbb S^{n}\rightarrow \mathbb R^{n+1} \),
2.
\(v(\cdot,t)\) is the unit outer normal vector at \(X(\cdot,t)\),
3.
\(f\) is a given smooth positive function on \(\mathbb{S}^n\),
4.
\(r=|X(x,t)|\) is the distance of \(X(x,t)\) to the origin.

The flow above was introduced to study the existence of solutions for the dual Minkowski problem proposed in [Y. Huang et al., loc. cit.]. This turns out to be equivalent to the following Monge-Ampère problem on \(\mathbb{S}^n\): \[ \mathrm{det}\left(\nabla^2u+uI\right)=\frac{f(x)}{u}\left(|\nabla u(x)|^2{+}u^2\right)^{\alpha/2}, \] where \(u\) denotes the support function of a hypersurface solution \(\mathcal{M}\).
The \(L_{p}\)-Minkowski problem, herein LpM, introduced in [E. Lutwak, J. Differ. Geom. 38, No. 1, 131–150 (1993; Zbl 0788.52007)], concerns the existence of closed convex hypersurfaces with prescribed \(p\)-area measure. By adapting the former Monge-Ampère equation, varying parameters include the dual problem to LpM. That is, \[ \mathrm{det}\left(\nabla^2u+uI\right)=\frac{f(x)u^{p-1}}{g\left(\frac{\nabla u(x)+ux}{\sqrt{|\nabla u(x)|^2+u(x)^2}} \right)}\left(|\nabla u(x)|^2{+}u^2\right)^{(n+1-q)/2}. \] This contains the dual LpM problem for \(g\equiv 1\).
The main result in the present paper provides sufficient existence conditions for this adapted Monge-Ampère problem assuming \(\alpha \in (0,1)\) and some regularity assumptions on \(f, g\) under constraints on \(p,q\).
The proof of the main result is achieved using the Gauss flow given above.

MSC:

53E10 Flows related to mean curvature
35J96 Monge-Ampère equations
58J05 Elliptic equations on manifolds, general theory

References:

[1] B. Andrews, Classification of limiting shapes for isotropic curve flows, J. Amer. Math. Soc., 16 (2003), 443-459. https://doi.org/10.1090/S0894-0347-02-00415-0 · Zbl 1023.53051 · doi:10.1090/S0894-0347-02-00415-0
[2] K. J. Böröczky, E. Lutwak, D. Yang, G. Zhang, The logarithmic Minkowski problem, J. Amer. Math. Soc., 26 (2013), 831-852. https://doi.org/10.1090/S0894-0347-2012-00741-3 · Zbl 1272.52012 · doi:10.1090/S0894-0347-2012-00741-3
[3] K. J. Böröczky, E. Lutwak, D. Yang, G. Zhang, Y. Zhao, The Gauss image problem, Commun. Pure Appl. Math., 73 (2020), 1406-1452. https://doi.org/10.1002/cpa.21898 · Zbl 1456.52002 · doi:10.1002/cpa.21898
[4] K. J. Böröczky, F. Fodor, The \(L_p\) dual Minkowski problem for \(p>1\) and \(q > 0\), J. Differ. Equations, 266 (2019), 7980-8033. https://doi.org/10.1016/j.jde.2018.12.020 · Zbl 1437.52002 · doi:10.1016/j.jde.2018.12.020
[5] P. Bryan, M. N. Ivaki, J. Scheuer, A unified flow approach to smooth, even \(L_p\)-Minkowski problems, Anal. PDE, 12 (2019), 259-280. https://doi.org/10.2140/apde.2019.12.259 · Zbl 1401.53048 · doi:10.2140/apde.2019.12.259
[6] C. Chen, Y. Huang, Y. Zhao, Smooth solution to the \(L_p\) dual Minkowski problem, Math. Ann., 373 (2019), 953-976. https://doi.org/10.1007/s00208-018-1727-3 · Zbl 1417.52008 · doi:10.1007/s00208-018-1727-3
[7] H. Chen, S. Chen, Q.-R. Li, Variations of a class of Monge-Ampère-type functionals and their applications, Anal. PDE, 14 (2021), 689-716. https://doi.org/10.2140/apde.2021.14.689 · Zbl 1468.35047 · doi:10.2140/apde.2021.14.689
[8] H. Chen, Q.-R. Li, The \(L_p\)-dual Minkowski problem and related parabolic flows, J. Funct. Anal., 281 (2021), 109139. https://doi.org/10.1016/j.jfa.2021.109139 · Zbl 1469.35115 · doi:10.1016/j.jfa.2021.109139
[9] S. Chen, Q.-R. Li, G. Zhu, The logarithmic Minkowski problem for non-symmetric measures, Trans. Amer. Math. Soc., 371 (2019), 2623-2641. https://doi.org/10.1090/tran/7499 · Zbl 1406.52018 · doi:10.1090/tran/7499
[10] K.-S. Chou, X.-J. Wang, A logarithmic Gauss curvature flow and the Minkowski problem, Ann. Inst. H. Poincaré Anal. Non Lin’eaire, 17 (2000), 733-751. https://doi.org/10.1016/S0294-1449(00)00053-6 · Zbl 1071.53534 · doi:10.1016/S0294-1449(00)00053-6
[11] K.-S. Chou, X.-J. Wang, The \(L_p\)-Minkowski problem and the Minkowski problem in centroaffine geometry, Adv. Math., 205 (2006), 33-83. https://doi.org/10.1016/j.aim.2005.07.004 · Zbl 1245.52001 · doi:10.1016/j.aim.2005.07.004
[12] S.-Z. Du, On the planar \(L_p\)-Minkowski problem, J. Differ. Equations, 287 (2021), 37-77. https://doi.org/10.1016/j.jde.2021.03.035 · Zbl 1465.35153 · doi:10.1016/j.jde.2021.03.035
[13] Q. Guang, Q.-R. Li, X.-J. Wang, The \(L_p\)-Minkowski problem with super-critical exponents, arXiv: 2203.05099.
[14] Q. Guang, Q.-R. Li, X.-J. Wang, Existence of convex hypersurfaces with prescribed centroaffine curvature, preprint. · Zbl 1533.35090
[15] Y. He, Q.-R. Li, X.-J. Wang, Multiple solutions of the \(L_p\)-Minkowski problem, Calc. Var., 55 (2016), 117. https://doi.org/10.1007/s00526-016-1063-y · Zbl 1356.52004 · doi:10.1007/s00526-016-1063-y
[16] Y. Huang, E. Lutwak, D. Yang, G. Zhang, Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems, Acta Math., 216 (2016), 325-388. https://doi.org/10.1007/s11511-016-0140-6 · Zbl 1372.52007 · doi:10.1007/s11511-016-0140-6
[17] Y. Huang, Y. Zhao, On the \(L_p\) dual Minkowski problem, Adv. Math., 332 (2018), 57-84. https://doi.org/10.1016/j.aim.2018.05.002 · Zbl 1393.52007 · doi:10.1016/j.aim.2018.05.002
[18] H. Jian, J. Lu, X.-J. Wang, Nonuniqueness of solutions to the \(L_p\)-Minkowski problem, Adv. Math., 281 (2015), 845-856. https://doi.org/10.1016/j.aim.2015.05.010 · Zbl 1326.35009 · doi:10.1016/j.aim.2015.05.010
[19] Q.-R. Li, Infinitely many solutions for centro-affine Minkowski problem, Int. Math. Res. Notices, 2019 (2019), 5577-5596. https://doi.org/10.1093/imrn/rnx284 · Zbl 1431.51002 · doi:10.1093/imrn/rnx284
[20] Q.-R. Li, W. Sheng, X.-J. Wang, Flow by Gauss curvature to the Aleksandrov and dual Minkowski problems, J. Eur. Math. Soc., 22 (2020), 893-923. https://doi.org/10.4171/JEMS/936 · Zbl 1445.53066 · doi:10.4171/JEMS/936
[21] Q.-R. Li, X.-J. Wang, A class of optimal transportation problems on the sphere, (Chinese), Scientia Sinica Mathematica, 48 (2018), 181-200. https://doi.org/10.1360/N012017-00061 · Zbl 1499.49101 · doi:10.1360/N012017-00061
[22] E. Lutwak, The Brunn-Minkowski-Firey theory Ⅰ. Mixed volumes and the Minkowski problem, J. Differential Geom., 38 (1993), 131-150. https://doi.org/10.4310/jdg/1214454097 · Zbl 0788.52007 · doi:10.4310/jdg/1214454097
[23] E. Lutwak, D. Yang, G. Zhang, \(L_p\) dual curvature measures, Adv. Math., 329 (2018), 85-132. https://doi.org/10.1016/j.aim.2018.02.011 · Zbl 1388.52003 · doi:10.1016/j.aim.2018.02.011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.