×

On subspace concentration for dual curvature measures. (English) Zbl 07737683

Summary: We study subspace concentration of dual curvature measures of convex bodies \(K\) satisfying \(\gamma(- K) \subseteq K\) for some \(\gamma \in(0, 1]\). We present upper bounds on the subspace concentration depending on \(\gamma\), which, in particular, retrieves the known results in the symmetric setting. The proof is based on a unified approach to prove necessary subspace concentration conditions via the divergence theorem.

MSC:

52A20 Convex sets in \(n\) dimensions (including convex hypersurfaces)

References:

[1] Aleksandrov, A., Existence and uniqueness of a convex surface with a given integral curvature, C. R. (Dokl.) Acad. Sci. URSS, 35, 131-134 (1942) · Zbl 0061.37604
[2] Bianchi, G.; Böröczky, K. J.; Colesanti, A., Smoothness in the \(L_p\) Minkowski problem for \(p < 1\), J. Geom. Anal., 30, 1, 680-705 (2020) · Zbl 1445.52005
[3] Böröczky, K. J., The logarithmic Minkowski conjecture and the \(L_p\)-Minkowski problem, Harmonic Analysis and Convexity, 9 (2023), 83 pages · Zbl 1525.35156
[4] Böröczky, K. J.; De, A., Stable solution of the logarithmic Minkowski problem in the case of hyperplane symmetries, J. Differ. Equ., 298, 298-322 (2021) · Zbl 1511.35204
[5] Böröczky, K. J.; Hegedűs, P., The cone volume measure of antipodal points, Acta Math. Hung., 146, 2, 449-465 (2015) · Zbl 1363.52007
[6] Böröczky, K. J.; Hegedűs, P.; Zhu, G., On the discrete logarithmic Minkowski problem, Int. Math. Res. Not., 6, 1807-1838 (2016) · Zbl 1345.52002
[7] Böröczky, K. J.; Henk, M., Cone-volume measure of general centered convex bodies, Adv. Math., 286, 703-721 (2016) · Zbl 1334.52003
[8] Böröczky, K. J.; Henk, M., Cone-volume measure and stability, Adv. Math., 306, 24-50 (2017) · Zbl 1366.52007
[9] Böröczky, K. J.; Henk, M.; Pollehn, H., Subspace concentration of dual curvature measures of symmetric convex bodies, J. Differ. Geom., 109, 3, 411-429 (2018) · Zbl 1397.52005
[10] Böröczky, K. J.; Lutwak, E.; Yang, D.; Zhang, G., The logarithmic Minkowski problem, J. Am. Math. Soc., 26, 3, 831-852 (2013) · Zbl 1272.52012
[11] Böröczky, K. J.; Lutwak, E.; Yang, D.; Zhang, G.; Zhao, Y., The dual Minkowski problem for symmetric convex bodies, Adv. Math., 356, Article 106805 pp. (2019) · Zbl 1427.52006
[12] Chen, S.; Li, Q.-R., On the planar dual Minkowski problem, Adv. Math., 333, 87-117 (2018) · Zbl 1397.52002
[13] Chen, S.; Li, Q.-R.; Zhu, G., The logarithmic Minkowski problem for non-symmetric measures, Trans. Am. Math. Soc., 371, 4, 2623-2641 (2019) · Zbl 1406.52018
[14] Chou, K.-S.; Wang, X.-J., The \(L_p\)-Minkowski problem and the Minkowski problem in centroaffine geometry, Adv. Math., 205, 1, 33-83 (2006) · Zbl 1245.52001
[15] Federer, H., Geometric Measure Theory (2014), Springer
[16] Firey, W. J., p-means of convex bodies, Math. Scand., 10, 17-24 (1962) · Zbl 0188.27303
[17] Gardner, R. J., Geometric Tomography, vol. 6 (1995), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1042.52501
[18] Gardner, R. J.; Hug, D.; Weil, W.; Xing, S.; Ye, D., General volumes in the Orlicz-Brunn-Minkowski theory and a related Minkowski problem I, Calc. Var. Partial Differ. Equ., 58, 1, 1-35 (2019) · Zbl 1404.52004
[19] Gardner, R. J.; Hug, D.; Xing, S.; Ye, D., General volumes in the Orlicz-Brunn-Minkowski theory and a related Minkowski problem II, Calc. Var. Partial Differ. Equ., 59, 1, 1-33 (2020) · Zbl 1430.52001
[20] Groemer, H., On the symmetric difference metric for convex bodies, Beitr. Algebra Geom., 41, 1, 107-114 (2000) · Zbl 0951.52004
[21] Gruber, P. M., Convex and Discrete Geometry, vol. 336 (2007), Springer · Zbl 1139.52001
[22] Guo, L.; Xi, D.; Zhao, Y., The \(L_p\) Chord Minkowski problem for \(0 \leq p < 1 (2023)\), arXiv preprint
[23] Hammer, P. C., The centroid of a convex body, Proc. Am. Math. Soc., 2, 4, 522-525 (1951) · Zbl 0043.16301
[24] Henk, M.; Linke, E., Cone-volume measures of polytopes, Adv. Math., 253, 50-62 (2014) · Zbl 1308.52007
[25] Henk, M.; Pollehn, H., Necessary subspace concentration conditions for the even dual Minkowski problem, Adv. Math., 323, 114-141 (2018) · Zbl 1383.52008
[26] Huang, Y.; Lutwak, E.; Yang, D.; Zhang, G., Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems, Acta Math., 216, 2, 325-388 (2016) · Zbl 1372.52007
[27] Huang, Y.; Lutwak, E.; Yang, D.; Zhang, G., The \(L_p\)-Aleksandrov problem for \(L_p\)-integral curvature, J. Differ. Geom., 110, 1, 1-29 (2018) · Zbl 1404.35139
[28] Hug, D.; Lutwak, E.; Yang, D.; Zhang, G., On the \(L_p\) Minkowski problem for polytopes, Discrete Comput. Geom., 33, 4, 699-715 (2005) · Zbl 1078.52008
[29] Jiang, Y.; Wu, Y., On the 2-dimensional dual Minkowski problem, J. Differ. Equ., 263, 6, 3230-3243 (2017) · Zbl 1387.52015
[30] Klee, V., Polyhedral sections of convex bodies, Acta Math., 103, 3-4, 243-267 (1960) · Zbl 0148.16203
[31] Kolesnikov, A. V., Mass transportation functionals on the sphere with applications to the logarithmic Minkowski problem, Mosc. Math. J., 20, 1, 67-91 (2020) · Zbl 1460.49037
[32] Li, Q.-R.; Sheng, W.; Wang, X.-J., Flow by Gauss curvature to the Aleksandrov and dual Minkowski problems, J. Eur. Math. Soc., 22, 3, 893-923 (2020) · Zbl 1445.53066
[33] Lutwak, E., Dual mixed volumes, Pac. J. Math., 58, 2, 531-538 (1975) · Zbl 0273.52007
[34] Lutwak, E., The Brunn-Minkowski-Firey theory I: mixed volumes and the Minkowski problem, J. Differ. Geom., 38, 1, 131-150 (1993) · Zbl 0788.52007
[35] Lutwak, E., Selected Affine Isoperimetric Inequalities, Handbook of Convex Geometry, 151-176 (1993) · Zbl 0847.52006
[36] Lutwak, E., The Brunn-Minkowski-Firey theory ii: affine and geominimal surface areas, Adv. Math., 118, 2, 244-294 (1996) · Zbl 0853.52005
[37] Lutwak, E.; Yang, D.; Zhang, G., \( L_p\) dual curvature measures, Adv. Math., 329, 85-132 (2018) · Zbl 1388.52003
[38] Mui, S., On the \(L^p\) Aleksandrov problem for negative p, Adv. Math., 408(part A), Article 108573 pp. (2022), 26 · Zbl 1497.52005
[39] Pfeffer, W. F., The Divergence Theorem and Sets of Finite Perimeter (2012), CRC Press · Zbl 1258.28002
[40] Rockafellar, R. T., Convex Analysis, vol. 18 (1970), Princeton University Press · Zbl 0193.18401
[41] Schneider, R., Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and Its Applications (2013), Cambridge University Press
[42] Stancu, A., The discrete planar \(L_0\)-Minkowski problem, Adv. Math., 167, 1, 160-174 (2002) · Zbl 1005.52002
[43] Stancu, A., On the number of solutions to the discrete two-dimensional \(L_0\)-Minkowski problem, Adv. Math., 180, 1, 290-323 (2003) · Zbl 1054.52001
[44] Süss, W., Über eine Affininvariante von Eibereichen, Arch. Math., 1, 2, 127-128 (1948) · Zbl 0031.27803
[45] Xiong, G., Extremum problems for the cone volume functional of convex polytopes, Adv. Math., 225, 6, 3214-3228 (2010) · Zbl 1213.52011
[46] Zhao, Y., The dual Minkowski problem for negative indices, Calc. Var. Partial Differ. Equ., 56, 2, 18 (2017) · Zbl 1392.52005
[47] Zhao, Y., Existence of solutions to the even dual Minkowski problem, J. Differ. Geom., 110, 3, 543-572 (2018) · Zbl 1406.52017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.