×

The hybridized discontinuous Galerkin method for implicit large-eddy simulation of transitional turbulent flows. (English) Zbl 1375.76069

Summary: We present a high-order implicit large-eddy simulation (ILES) approach for transitional aerodynamic flows. The approach encompasses a hybridized discontinuous Galerkin (DG) method for the discretization of the Navier-Stokes (NS) equations, and a parallel preconditioned Newton-GMRES solver for the resulting nonlinear system of equations. The combination of hybridized DG methods with an efficient solution procedure leads to a high-order accurate NS solver that is competitive to alternative approaches, such as finite volume and finite difference codes, in terms of computational cost. The proposed approach is applied to transitional flows over the NACA 65-(18)10 compressor cascade and the Eppler 387 wing at Reynolds numbers up to \(460,000\). Grid convergence studies are presented and the required resolution to capture transition at different Reynolds numbers is investigated. Numerical results show rapid convergence and excellent agreement with experimental data. In short, this work aims to demonstrate the potential of high-order ILES for simulating transitional aerodynamic flows. This is illustrated through numerical results and supported by theoretical considerations.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76N20 Boundary-layer theory for compressible fluids and gas dynamics

Software:

Aghora; METIS

References:

[1] Alexander, R., Diagonally implicit Runge-Kutta methods for stiff ODEs, SIAM J. Numer. Anal., 14, 6, 1006-1021 (1977) · Zbl 0374.65038
[2] Bailey, S. C.C.; Vallikivi, M.; Hultmark, M.; Smits, A. J., Estimating the value of von Kármán’s constant in turbulent pipe flow, J. Fluid Mech., 749, 79-98 (2014)
[3] Boris, J. P., On Large Eddy Simulation using subgrid turbulence models, (Lumley, J. L., Whither Turbulence: Turbulence at the Crossroads (1990), Springer: Springer New York), 344-353
[4] Boris, J. P.; Grinstein, F. F.; Oran, E. S.; Kolbe, R. L., New insights into large eddy simulation, Fluid Dyn. Res., 10, 4, 199-228 (1992)
[5] Cai, X. C.; Sarkis, M., A restricted additive Schwarz preconditioner for general sparse linear systems, SIAM J. Sci. Comput., 21, 2, 792-797 (1999) · Zbl 0944.65031
[6] Cockburn, B.; Gopalakrishnan, J.; Lazarov, R., Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 47, 2, 1319-1365 (2009) · Zbl 1205.65312
[7] Cockburn, B.; Guzman, J.; Soon, S. C.; Stolarski, H. K., An analysis of the embedded discontinuous Galerkin method for second-order elliptic problems, SIAM J. Numer. Anal., 47, 4, 2686-2707 (2009) · Zbl 1211.65153
[8] Drela, M., Flight Vehicle Aerodynamics (2014), The MIT Press
[9] Drikakis, D.; Marco, H.; Grinstein, F. F.; DeVore, C. R.; Fureby, C.; Liefvendahl, M.; Youngs, D. L., Numerics for ILES: limiting algorithms, (Grinstein, F. F.; Margolin, L. G.; Rider, W. J., Implicit Large-Eddy Simulation: Computing Turbulent Flow Dynamics (2007), Cambridge University Press: Cambridge University Press New York), 94-129 · Zbl 1135.76001
[10] Fernandez, P.; Nguyen, N. C.; Roca, X.; Peraire, J., Implicit large-eddy simulation of compressible flows using the Interior Embedded Discontinuous Galerkin method, (54th AIAA Aerospace Sciences Meeting. 54th AIAA Aerospace Sciences Meeting, San Diego, USA (2016))
[11] Fernandez, P., High-Order Implicit-Large Eddy Simulation for Transitional Aerodynamic Flows (2016), Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Master Thesis
[12] Frere, A.; Hillewaert, K.; Sarlak, H.; Mikkelsen, R. F., Cross-validation of numerical and experimental studies of transitional airfoil performance, (33rd ASME (2015), Wind Energy Symposium: Wind Energy Symposium Kissimmee, USA)
[13] Fureby, C.; Taylor, G.; Weller, H. G.; Gosman, A. D., A comparative study of subgrid scale models in homogeneous isotropic turbulence, Phys. Fluids, 9, 5, 1416-1429 (1997) · Zbl 1185.76663
[14] Fureby, C.; Grinstein, F. F., Monotonically integrated Large Eddy Simulation of free shear flows, AIAA J., 37, 5, 544-556 (1999)
[15] Fureby, C.; Grinstein, F. F., Large Eddy Simulation of high-Reynolds-number free and wall-bounded flows, J. Comput. Phys., 181, 1, 68-97 (2002) · Zbl 1051.76579
[16] Fureby, C.; Alin, N.; Wikstrom, N.; Menon, S.; Svanstedt, N.; Persson, L., Large-Eddy simulation of high-Reynolds-number wall-bounded flows, AIAA J., 42, 3, 457-468 (2004)
[17] Galbraith, M. C.; Visbal, M. R., Implicit Large-Eddy Simulation of low Reynolds number flow past the SD7003 airfoil, (46th AIAA Aerospace Sciences Meeting and Exhibit. 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, USA (2008))
[18] Gassner, G. J.; Beck, A. D., On the accuracy of high-order discretizations for underresolved turbulence simulations, Theor. Comput. Fluid Dyn., 27, 3, 221-237 (2013)
[19] Grinstein, F. F.; DeVore, C. R., Dynamics of coherent structures and transition to turbulence in free square jets, Phys. Fluids, 8, 5, 1237-1251 (1996) · Zbl 1086.76021
[20] Grinstein, F. F.; Margolin, L. G.; Rider, W. J., A rationale for implicit LES, (Grinstein, F. F.; Margolin, L. G.; Rider, W. J., Implicit Large-Eddy Simulation: Computing Turbulent Flow Dynamics (2007), Cambridge University Press: Cambridge University Press New York) · Zbl 1273.76213
[21] Jeong, J.; Hussain, F., On the identification of a vortex, J. Fluid Mech., 285, 69-94 (1995) · Zbl 0847.76007
[22] Lesieur, M.; Metais, O., New trends in Large-Eddy Simulations of turbulence, Annu. Rev. Fluid Mech., 28, 45-82 (1996)
[23] Levenberg, K., A method for the solution of certain non-linear problems in least squares, Q. Appl. Math., 2, 164-168 (1944) · Zbl 0063.03501
[24] Lombard, J. E.W.; Moxey, D.; Sherwin, S. J.; Hoessler, J. F.A.; Dhandapani, S.; Taylor, M. J., Implicit Large-Eddy Simulation of a wingtip vortex, AIAA J., 54, 2, 506-518 (2016)
[25] Karypis, G.; Kumar, V., Multilevel \(k\)-way partitioning scheme for irregular graphs, J. Parallel Distrib. Comput., 48, 1, 96-129 (1998)
[26] Karypis METIS, G., A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices (2013), Department of Computer Science & Engineering, University of Minnesota, Version 5.1.0
[27] Margolin, L. G.; Rider, W. J., Numerical regularization: the numerical analysis of implicit subgrid models, (Grinstein, F. F.; Margolin, L. G.; Rider, W. J., Implicit Large-Eddy Simulation: Computing Turbulent Flow Dynamics (2007), Cambridge University Press: Cambridge University Press New York), 195-221 · Zbl 1135.76001
[28] Marquardt, D. W., An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Ind. Appl. Math., 11, 2, 431-441 (1963) · Zbl 0112.10505
[29] McGhee, R. J.; Walker, B. S.; Millard, B. F., Experimental Results for the Eppler 387 Airfoil at Low Reynolds Numbers in the Langley Low-Turbulence Pressure Tunnel (1988), Langley Research Center, NASA Technical Memorandum 4062
[30] Medic, G.; Zhang, V.; Wang, G.; Tang, G.; Joo, J.; Sharma, O., Prediction of transition and losses in compressor cascades using Large-Eddy-Simulation, J. Turbomach., 138, 12, 121001 (2016)
[31] Meneveau, C.; Katz, J., Scale-invariance and turbulence models for Large-Eddy Simulation, Annu. Rev. Fluid Mech., 32, 1-32 (2000) · Zbl 0988.76044
[32] Moura, R. C.; Sherwin, S. J.; Peiró, J., Linear dispersion-diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods, J. Comput. Phys., 298, 695-710 (2015) · Zbl 1349.76131
[33] Murman, S. M.; Diosady, L. T.; Garai, A.; Ceze, M., A space-time discontinuous-Galerkin approach for separated flows, (54th AIAA Aerospace Sciences Meeting. 54th AIAA Aerospace Sciences Meeting, San Diego, USA (2016))
[34] Nguyen, N. C.; Peraire, J., Hybridizable discontinuous Galerkin methods for partial differential equations in continuum mechanics, J. Comput. Phys., 231, 18, 5955-5988 (2012) · Zbl 1277.65082
[35] Nguyen, N. C.; Peraire, J.; Cockburn, B., A class of embedded discontinuous Galerkin methods for computational fluid dynamics, J. Comput. Phys., 302, 1, 674-692 (2015) · Zbl 1349.76245
[36] Park, J. S.; Witherden, F. D.; Vincent, P. E., High-order accurate Implicit Large Eddy Simulations of flow over a NACA0021 aerofoil in deep stall, AIAA J. (2017), submitted for publication
[37] Peraire, J.; Nguyen, N. C.; Cockburn, B., A hybridizable discontinuous Galerkin method for the compressible Euler and Navier-Stokes equations, (AIAA Conference. AIAA Conference, Orlando, USA (2010)) · Zbl 1227.76036
[38] Peraire, J.; Nguyen, N. C.; Cockburn, B., An embedded discontinuous Galerkin method for the compressible Euler and Navier-Stokes equations, (20th AIAA Computational Fluid Dynamics Conference. 20th AIAA Computational Fluid Dynamics Conference, Honolulu, USA (2011)) · Zbl 1391.76353
[39] Persson, P.-O.; Peraire, J., Newton-GMRES preconditioning for discontinuous Galerkin discretizations of the Navier-Stokes equations, SIAM J. Sci. Comput., 30, 6, 2709-2733 (2008) · Zbl 1362.76052
[40] Renac, F.; de la Llave Plata, M.; Martin, E.; Chapelier, J.-B.; Couaillier, V., Aghora: a high-order DG solver for turbulent flow simulations, (IDIHOM: Industrialization of High-Order Methods - A Top-Down Approach. IDIHOM: Industrialization of High-Order Methods - A Top-Down Approach, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 128 (2015)), 315-335
[41] Rider, W. J.; Margolin, L. G., From numerical analysis to implicit subgrid turbulence modeling, (16th AIAA Computational Fluid Dynamics Conference. 16th AIAA Computational Fluid Dynamics Conference, Orlando, USA (2003))
[42] Roca, X.; Nguyen, N. C.; Peraire, J., Scalable parallelization of the hybridized discontinuous Galerkin method for compressible flow, (43rd AIAA Fluid Dynamics Conference and Exhibit. 43rd AIAA Fluid Dynamics Conference and Exhibit, Orlando, USA (2013))
[43] Saad, Y.; Schultz, M. H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 3, 856-869 (1986) · Zbl 0599.65018
[44] Schlichting, H.; Gersten, K., Boundary-Layer Theory (1999), Springer-Verlag
[45] Spalart, P. R., Strategies for turbulence modelling and simulations, Int. J. Heat Fluid Flow, 21, 252-263 (2000)
[46] Visbal, M. R.; Gordnier, R. E.; Galbraith, M. C., High-fidelity simulations of moving and flexible airfoils at low Reynolds numbers, Exp. Fluids, 46, 5, 903-922 (2009)
[47] Uranga, A.; Persson, P.-O.; Drela, M.; Peraire, J., Implicit Large Eddy Simulation of transitional flows over airfoils and wings, (19th Computational Fluid Dynamics Conference. 19th Computational Fluid Dynamics Conference, San Antonio, USA (2009))
[48] Uranga, A.; Persson, P.-O.; Drela, M.; Peraire, J., Implicit Large Eddy Simulation of transition to turbulence at low Reynolds numbers using a discontinuous Galerkin method, Int. J. Numer. Methods Eng., 87, 232-261 (2011) · Zbl 1242.76085
[49] de Wiart, C. C.; Hillewaert, K., Development and validation of a massively parallel high-order solver for DNS and LES of industrial flows, (IDIHOM: Industrialization of High-Order Methods - A Top-Down Approach. IDIHOM: Industrialization of High-Order Methods - A Top-Down Approach, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 128 (2015)), 251-292
[50] Zhou, Y.; Wang, Z. J., Implicit Large Eddy Simulation of transitional flow over a SD7003 wing using high-order spectral difference method, (40th Fluid Dynamics Conference and Exhibit. 40th Fluid Dynamics Conference and Exhibit, Chicago, USA (2010))
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.