×

Hybridizable discontinuous Galerkin methods for the two-dimensional Monge-Ampère equation. (English) Zbl 07900962

Summary: We introduce two hybridizable discontinuous Galerkin (HDG) methods for numerically solving the two-dimensional Monge-Ampère equation. The first HDG method is devised to solve the nonlinear elliptic Monge-Ampère equation by using Newton’s method. The second HDG method is devised to solve a sequence of the Poisson equation until convergence to a fixed-point solution of the Monge-Ampère equation is reached. Numerical examples are presented to demonstrate the convergence and accuracy of the HDG methods. Furthermore, the HDG methods are applied to \(r\)-adaptive mesh generation by redistributing a given scalar density function via the optimal transport theory. This \(r\)-adaptivity methodology leads to the Monge-Ampère equation with a nonlinear Neumann boundary condition arising from the optimal transport of the density function to conform the resulting high-order mesh to the boundary. Hence, we extend the HDG methods to treat the nonlinear Neumann boundary condition. Numerical experiments are presented to illustrate the generation of \(r\)-adaptive high-order meshes on planar and curved domains.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65H10 Numerical computation of solutions to systems of equations
47H10 Fixed-point theorems
35J96 Monge-Ampère equations
35J25 Boundary value problems for second-order elliptic equations
35J60 Nonlinear elliptic equations

Software:

Exasim

References:

[1] Feng, X.; Glowinski, R.; Neilan, M., Recent developments in numerical methods for fully nonlinear second order partial differential equations, SIAM Rev., 55, 2, 205-267, 2013 · Zbl 1270.65062 · doi:10.1137/110825960
[2] Brenier, Y., Polar factorization and monotone rearrangement of vector-valued functions, Commun. Pure Appl. Math., 44, 4, 375-417, 1991 · Zbl 0738.46011 · doi:10.1002/cpa.3160440402
[3] Benamou, JD; Brenier, Y., A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84, 3, 375-393, 2000 · Zbl 0968.76069 · doi:10.1007/s002110050002
[4] Benamou, JD; Froese, BD; Oberman, AM, Two numerical methods for the elliptic Monge-Ampère equation, ESAIM Math. Modell. Numer. Anal., 44, 4, 737-758, 2010 · Zbl 1192.65138 · doi:10.1051/m2an/2010017
[5] Benamou, JD; Froese, BD; Oberman, AM, Numerical solution of the optimal transportation problem using the Monge-Ampère equation, J. Comput. Phys., 260, 107-126, 2014 · Zbl 1349.65554 · doi:10.1016/j.jcp.2013.12.015
[6] Caffarelli, LA, Interior \(W^2, p\) estimates for solutions of the Monge-Ampere equation, Ann. Math., 131, 1, 135, 1990 · Zbl 0704.35044 · doi:10.2307/1971510
[7] Dean, EJ; Glowinski, R., Numerical methods for fully nonlinear elliptic equations of the Monge-Ampère type, Comput. Methods Appl. Mech. Eng., 195, 13-16, 1344-1386, 2006 · Zbl 1119.65116 · doi:10.1016/j.cma.2005.05.023
[8] Frisch, U.; Matarrese, S.; Mohayaee, R., A reconstruction of the initial conditions of the universe by optimal mass transportation, Nature, 417, 6886, 260-262, 2002 · doi:10.1038/417260a
[9] Froese, BD; Oberman, AM, Fast finite difference solvers for singular solutions of the elliptic Monge-Ampère equation, J. Comput. Phys., 230, 3, 818-834, 2011 · Zbl 1206.65242 · doi:10.1016/j.jcp.2010.10.020
[10] Oliker, V.: Mathematical aspects of design of beam shaping surfaces in geometrical optics. In: Trends in nonlinear analysis, pp. 193-224. Springer, Berlin (2003). doi:10.1007/978-3-662-05281-54 · Zbl 1062.78002
[11] Prins, CR; Ten Thije Boonkkamp, JH; Van Roosmalen, J.; Ijzerman, WL; Tukker, TW, A Monge-Ampère-solver for free-form reflector design, SIAM J. Sci. Comput., 36, 3, B640-B660, 2014 · Zbl 1308.65183 · doi:10.1137/130938876
[12] Trudinger, NS; Wang, X-J, The Monge-Ampere equation and its geometric applications, Handb. Geom. Anal., I, 467-524, 2008 · Zbl 1156.35033
[13] Awanou, G., Standard finite elements for the numerical resolution of the elliptic Monge-Ampère equation: classical solutions, IMA J. Numer. Anal., 35, 3, 1150-1166, 2015 · Zbl 1323.65115 · doi:10.1093/imanum/dru028
[14] Böhmer, K., On finite element methods for fully nonlinear elliptic equations of second order, SIAM J. Numer. Anal., 46, 3, 1212-1249, 2008 · Zbl 1166.35322 · doi:10.1137/040621740
[15] Brenner, S.; Gudi, T.; Neilan, M.; Sung, L-Y, C0 penalty methods for the fully nonlinear Monge-Ampère equation, Math. Comput., 80, 276, 1979-1995, 2011 · Zbl 1228.65220 · doi:10.1090/s0025-5718-2011-02487-7
[16] Brenner, SC; Neilan, M., Finite element approximations of the three dimensional Monge-Ampère equation, ESAIM Math. Modell. Numer. Anal., 46, 5, 979-1001, 2012 · Zbl 1272.65088 · doi:10.1051/m2an/2011067
[17] Caboussat, A.; Glowinski, R.; Sorensen, DC, A least-squares method for the numerical solution of the Dirichlet problem for the elliptic Monge-Ampère equation in dimension two, ESAIM Control Optim. Calc. Var., 19, 3, 780-810, 2013 · Zbl 1272.65089 · doi:10.1051/cocv/2012033
[18] Feng, X.; Neilan, M., Finite element approximations of general fully nonlinear second order elliptic partial differential equations based on the vanishing moment method, Comput. Math. Appl., 68, 12, 2182-2204, 2014 · Zbl 1361.35061 · doi:10.1016/j.camwa.2014.07.023
[19] Feng, X.; Neilan, M., Mixed finite element methods for the fully nonlinear Monge-Ampère equation based on the vanishing moment method, SIAM J. Numer. Anal., 47, 2, 1226-1250, 2009 · Zbl 1195.65170 · doi:10.1137/070710378
[20] Feng, X.; Lewis, T., Mixed interior penalty discontinuous Galerkin methods for fully nonlinear second order elliptic and parabolic equations in high dimensions, Numer. Methods Partial Differ. Equ., 30, 5, 1538-1557, 2014 · Zbl 1309.65133 · doi:10.1002/num.21856
[21] Feng, X.; Jensen, M., Convergent semi-Lagrangian methods for the Monge-Ampère equation on unstructured grids, SIAM J. Numer. Anal., 55, 2, 691-712, 2017 · Zbl 1362.65117 · doi:10.1137/16M1061709
[22] Feng, X.; Lewis, T., Nonstandard local discontinuous Galerkin methods for fully nonlinear second order elliptic and parabolic equations in high dimensions, J. Sci. Comput., 77, 3, 1534-1565, 2018 · Zbl 1406.65110 · doi:10.1007/s10915-018-0765-z
[23] Froese, BD, A numerical method for the elliptic Monge-Ampère equation with transport boundary conditions, SIAM J. Sci. Comput., 34, 3, A1432-A1459, 2012 · Zbl 1252.65180 · doi:10.1137/110822372
[24] Liu, H.; Glowinski, R.; Leung, S.; Qian, J., A finite element/operator-splitting method for the numerical solution of the three dimensional Monge-Ampère equation, J. Sci. Comput., 81, 3, 2271-2302, 2019 · Zbl 1433.35157 · doi:10.1007/s10915-019-01080-4
[25] Lakkis, O.; Pryer, T., A finite element method for nonlinear elliptic problems, SIAM J. Sci. Comput., 35, 4, A2025-A2045, 2013 · Zbl 1362.65126 · doi:10.1137/120887655
[26] Glowinski, R.; Liu, H.; Leung, S.; Qian, J., A finite element/operator-splitting method for the numerical solution of the two dimensional elliptic Monge-Ampère equation, J. Sci. Comput., 79, 1, 1-47, 2019 · Zbl 1447.65141 · doi:10.1007/s10915-018-0839-y
[27] Delzanno, GL; Chacón, L.; Finn, JM; Chung, Y.; Lapenta, G., An optimal robust equidistribution method for two-dimensional grid adaptation based on Monge-Kantorovich optimization, J. Comput. Phys., 227, 23, 9841-9864, 2008 · Zbl 1155.65394 · doi:10.1016/j.jcp.2008.07.020
[28] Budd, CJ; Williams, JF, Moving mesh generation using the parabolic Monge-Ampère equation, SIAM J. Sci. Comput., 31, 5, 3438-3465, 2009 · Zbl 1200.65099 · doi:10.1137/080716773
[29] Budd, CJ; Russell, RD; Walsh, E., The geometry of r-adaptive meshes generated using optimal transport methods, J. Comput. Phys., 282, 113-137, 2015 · Zbl 1352.65603 · doi:10.1016/j.jcp.2014.11.007
[30] Browne, PA; Budd, CJ; Piccolo, C.; Cullen, M., Fast three dimensional r-adaptive mesh redistribution, J. Comput. Phys., 275, 174-196, 2014 · Zbl 1349.65419 · doi:10.1016/j.jcp.2014.06.009
[31] Chacón, L.; Delzanno, GL; Finn, JM, Robust, multidimensional mesh-motion based on Monge-Kantorovich equidistribution, J. Comput. Phys., 230, 1, 87-103, 2011 · Zbl 1205.65260 · doi:10.1016/j.jcp.2010.09.013
[32] Weller, H.; Browne, P.; Budd, C.; Cullen, M., Mesh adaptation on the sphere using optimal transport and the numerical solution of a Monge-Ampère type equation, J. Comput. Phys., 308, 102-123, 2016 · Zbl 1351.86008 · doi:10.1016/j.jcp.2015.12.018
[33] McRae, AT; Cotter, CJ; Budd, CJ, Optimal-transport-based mesh adaptivity on the plane and sphere using finite elements, SIAM J. Sci. Comput., 40, 2, A1121-A1148, 2018 · Zbl 1448.65143 · doi:10.1137/16M1109515
[34] Sulman, M.; Williams, JF; Russell, RD, Optimal mass transport for higher dimensional adaptive grid generation, J. Comput. Phys., 230, 9, 3302-3330, 2011 · Zbl 1218.65065 · doi:10.1016/j.jcp.2011.01.025
[35] Sulman, MH; Nguyen, TB; Haynes, RD; Huang, W., Domain decomposition parabolic Monge-Ampère approach for fast generation of adaptive moving meshes, Comput. Math. Appl., 84, 97-111, 2021 · Zbl 1524.65496 · doi:10.1016/j.camwa.2020.12.007
[36] Aparicio-Estrems, G.; Gargallo-Peiró, A.; Roca, X., Combining high-order metric interpolation and geometry implicitization for curved r-adaption, CAD Comput. Aided Des., 157, 2023 · doi:10.1016/j.cad.2023.103478
[37] Cockburn, B.; Gopalakrishnan, J.; Lazarov, R., Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 47, 1319-1365, 2009 · Zbl 1205.65312 · doi:10.1137/070706616
[38] Cockburn, B.; Dong, B.; Guzmán, J.; Restelli, M.; Sacco, R., A hybridizable discontinuous Galerkin method for steady-state convection-diffusion-reaction problems, SIAM J. Sci. Comput., 31, 5, 3827-3846, 2009 · Zbl 1200.65093 · doi:10.1137/080728810
[39] Nguyen, NC; Peraire, J.; Cockburn, B., An implicit high-order hybridizable discontinuous Galerkin method for linear convection diffusion equations, J. Comput. Phys., 228, 9, 3232-3254, 2009 · Zbl 1187.65110 · doi:10.1016/j.jcp.2009.01.030
[40] Cockburn, B.; Mustapha, K., A hybridizable discontinuous Galerkin method for fractional diffusion problems, Numer. Math., 130, 2, 293-314, 2015 · Zbl 1329.26013 · doi:10.1007/s00211-014-0661-x
[41] Nguyen, NC; Peraire, J.; Cockburn, B., An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection diffusion equations, J. Comput. Phys., 228, 23, 8841-8855, 2009 · Zbl 1177.65150 · doi:10.1016/j.jcp.2009.08.030
[42] Ueckermann, MP; Lermusiaux, PF, High-order schemes for 2D unsteady biogeochemical ocean models, Ocean Dyn., 60, 6, 1415-1445, 2010 · doi:10.1007/s10236-010-0351-x
[43] Cockburn, B.; Gopalakrishnan, J., The derivation of hybridizable discontinuous Galerkin methods for Stokes flow, SIAM J. Numer. Anal., 47, 2, 1092-1125, 2009 · Zbl 1279.76016 · doi:10.1137/080726653
[44] Cockburn, B.; Gopalakrishnan, J.; Nguyen, NC; Peraire, J.; Sayas, FJ, Analysis of an HDG method for Stokes flow, Math. Comp., 80, 723-760, 2011 · Zbl 1410.76164 · doi:10.1090/S0025-5718-2010-02410-X
[45] Cockburn, B.; Nguyen, NC; Peraire, J., A comparison of HDG methods for Stokes flow, J. Sci. Comput., 45, 1-3, 215-237, 2010 · Zbl 1203.76079 · doi:10.1007/s10915-010-9359-0
[46] Nguyen, NC; Peraire, J.; Cockburn, B., A hybridizable discontinuous Galerkin method for Stokes flow, Comput. Methods Appl. Mech. Eng., 199, 9-12, 582-597, 2010 · Zbl 1227.76036 · doi:10.1016/j.cma.2009.10.007
[47] Ahnert, T.; Bärwolff, G., Numerical comparison of hybridized discontinuous Galerkin and finite volume methods for incompressible flow, Int. J. Numer. Meth. Fluids, 76, 5, 267-281, 2014 · Zbl 1455.76032 · doi:10.1002/fld.3938
[48] Nguyen, NC; Peraire, J.; Cockburn, B., An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations, J. Comput. Phys., 230, 4, 1147-1170, 2011 · Zbl 1391.76353 · doi:10.1016/j.jcp.2010.10.032
[49] Nguyen, N. C., Peraire, J., Cockburn, B.: Hybridizable discontinuous Galerkin methods. In: Proceedings of the international conference on spectral and high order methods, pp. 63-84. Springer, Berlin (2009) · Zbl 1216.65160
[50] Nguyen, N. C., Peraire, J., Cockburn, B.: A hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations. In: Proceedings of the 48th AIAA Aerospace Sciences Meeting and Exhibit, pp. AIAA 2010-362. Orlando, Florida (2010)
[51] Rhebergen, S.; Cockburn, B., A space-time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains, J. Comput. Phys., 231, 11, 4185-4204, 2012 · Zbl 1426.76298 · doi:10.1016/j.jcp.2012.02.011
[52] Rhebergen, S.; Wells, GN, A hybridizable discontinuous Galerkin method for the Navier-Stokes equations with pointwise divergence-free velocity field, J. Sci. Comput., 76, 3, 1484-1501, 2018 · Zbl 1397.76077 · doi:10.1007/s10915-018-0671-4
[53] Ueckermann, MP; Lermusiaux, PF, Hybridizable discontinuous Galerkin projection methods for Navier-Stokes and Boussinesq equations, J. Comput. Phys., 306, 390-421, 2016 · Zbl 1351.76083 · doi:10.1016/j.jcp.2015.11.028
[54] Ciucă, C.; Fernandez, P.; Christophe, A.; Nguyen, NC; Peraire, J., Implicit hybridized discontinuous Galerkin methods for compressible magnetohydrodynamics, J. Comput. Phys. X, 5, 2020 · Zbl 07785522 · doi:10.1016/j.jcpx.2019.100042
[55] Fernandez, P.; Nguyen, NC; Peraire, J., The hybridized discontinuous Galerkin method for Implicit Large-Eddy simulation of transitional turbulent flows, J. Comput. Phys., 336, 308-329, 2017 · Zbl 1375.76069 · doi:10.1016/j.jcp.2017.02.015
[56] Franciolini, M.; Fidkowski, KJ; Crivellini, A., Efficient discontinuous Galerkin implementations and preconditioners for implicit unsteady compressible flow simulations, Comput. Fluids, 203, 2020 · Zbl 1519.76143 · doi:10.1016/j.compfluid.2020.104542
[57] Moro, D., Nguyeny, N. C., Peraire, J.: Navier-stokes solution using Hybridizable discontinuous Galerkin methods. In: 20th AIAA computational fluid dynamics conference 2011, American Institute of Aeronautics and Astronautics, Honolulu, Hawaii, pp. AIAA-2011-3407 (2011). doi:10.2514/6.2011-3407. doi:10.2514/6.2011-3407
[58] Nguyen, NC; Peraire, J., Hybridizable discontinuous Galerkin methods for partial differential equations in continuum mechanics, J. Comput. Phys., 231, 18, 5955-5988, 2012 · Zbl 1277.65082 · doi:10.1016/j.jcp.2012.02.033
[59] Nguyen, NC; Peraire, J.; Cockburn, B., A class of embedded discontinuous Galerkin methods for computational fluid dynamics, J. Comput. Phys., 302, 674-692, 2015 · Zbl 1349.76245 · doi:10.1016/j.jcp.2015.09.024
[60] Vila-Pérez, J.; Giacomini, M.; Sevilla, R.; Huerta, A., Hybridisable discontinuous Galerkin formulation of compressible flows, Arch. Comput. Methods Eng., 28, 2, 753-784, 2021 · doi:10.1007/s11831-020-09508-z
[61] Vila-Pérez, J.; Van Heyningen, RL; Nguyen, N-C; Peraire, J., Exasim: generating discontinuous Galerkin codes for numerical solutions of partial differential equations on graphics processors, SoftwareX, 20, 2022 · doi:10.1016/j.softx.2022.101212
[62] Nguyen, NC; Peraire, J.; Cockburn, B., Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell’s equations, J. Comput. Phys., 230, 19, 7151-7175, 2011 · Zbl 1230.78031 · doi:10.1016/j.jcp.2011.05.018
[63] Sánchez, MA; Du, S.; Cockburn, B.; Nguyen, N-C; Peraire, J., Symplectic Hamiltonian finite element methods for electromagnetics, Comput. Methods Appl. Mech. Eng., 396, 2022 · Zbl 1507.74509 · doi:10.1016/j.cma.2022.114969
[64] Li, L.; Lanteri, S.; Perrussel, R., A hybridizable discontinuous Galerkin method combined to a Schwarz algorithm for the solution of 3D time-harmonic Maxwell’s equations, J. Comput. Phys., 256, 563-581, 2014 · Zbl 1349.78069 · doi:10.1016/j.jcp.2013.09.003
[65] Soon, S-C; Cockburn, B.; Stolarski, HK, A hybridizable discontinuous Galerkin method for linear elasticity, Int. J. Numer. Meth. Eng., 80, 8, 1058-1092, 2009 · Zbl 1176.74196 · doi:10.1002/nme.2646
[66] Cockburn, B.; Shi, K., Superconvergent HDG methods for linear elasticity with weakly symmetric stresses, IMA J. Numer. Anal., 33, 3, 747-770, 2013 · Zbl 1441.74235 · doi:10.1093/imanum/drs020
[67] Fu, G.; Cockburn, B.; Stolarski, H., Analysis of an HDG method for linear elasticity, Int. J. Numer. Meth. Eng., 102, 3-4, 551-575, 2015 · Zbl 1352.74037 · doi:10.1002/nme.4781
[68] Qiu, W.; Shen, J.; Shi, K., An HDG method for linear elasticity with strong symmetric stresses, Math. Comput., 87, 309, 69-93, 2018 · Zbl 1410.65459 · doi:10.1090/mcom/3249
[69] Sánchez, MA; Cockburn, B.; Nguyen, NC; Peraire, J., Symplectic Hamiltonian finite element methods for linear elastodynamics, Comput. Methods Appl. Mech. Eng., 381, 2021 · Zbl 1506.74438 · doi:10.1016/j.cma.2021.113843
[70] Cockburn, B.; Shen, J., An algorithm for stabilizing hybridizable discontinuous Galerkin methods for nonlinear elasticity, Results Appl. Math., 1, 2019 · Zbl 1451.74205 · doi:10.1016/j.rinam.2019.01.001
[71] Fernandez, P.; Christophe, A.; Terrana, S.; Nguyen, NC; Peraire, J., Hybridized discontinuous Galerkin methods for wave propagation, J. Sci. Comput., 77, 3, 1566-1604, 2018 · Zbl 1407.65184 · doi:10.1007/s10915-018-0811-x
[72] Kabaria, H.; Lew, A.; Cockburn, B., A hybridizable discontinuous Galerkin formulation for non-linear elasticity, Comput. Methods Appl. Mech. Eng., 283, 303-329, 2015 · Zbl 1423.74895 · doi:10.1016/j.cma.2014.08.012
[73] Terrana, S.; Nguyen, NC; Bonet, J.; Peraire, J., A hybridizable discontinuous Galerkin method for both thin and 3D nonlinear elastic structures, Comput. Methods Appl. Mech. Eng., 352, 561-585, 2019 · Zbl 1441.74036 · doi:10.1016/J.CMA.2019.04.029
[74] Bai, Y.; Fidkowski, KJ, Continuous artificial-viscosity shock capturing for hybrid discontinuous Galerkin on adapted meshes, AIAA J., 60, 10, 5678-5691, 2022 · doi:10.2514/1.J061783
[75] Barter, GE; Darmofal, DL, Shock capturing with PDE-based artificial viscosity for DGFEM: Part I. Formulation, J. Comput. Phys., 229, 5, 1810-1827, 2010 · Zbl 1329.76153 · doi:10.1016/j.jcp.2009.11.010
[76] Ching, EJ; Lv, Y.; Gnoffo, P.; Barnhardt, M.; Ihme, M., Shock capturing for discontinuous Galerkin methods with application to predicting heat transfer in hypersonic flows, J. Comput. Phys., 376, 54-75, 2019 · Zbl 1416.76099 · doi:10.1016/j.jcp.2018.09.016
[77] Nguyen, N. C., Perairey, J.: An adaptive shock-capturing HDG method for compressible flows. In: 20th AIAA computational fluid dynamics conference 2011, American Institute of Aeronautics and Astronautics, Reston, Virigina, 2011, pp. AIAA 2011-3060. doi:10.2514/6.2011-3060. doi:10.2514/6.2011-3060
[78] Moro, D.; Nguyen, NC; Peraire, J., Dilation-based shock capturing for high-order methods, Int. J. Numer. Meth. Fluids, 82, 7, 398-416, 2016 · doi:10.1002/fld.4223
[79] Persson, P. O., Peraire, J.: Sub-cell shock capturing for discontinuous Galerkin methods. In: Collection of Technical Papers-44th AIAA Aerospace Sciences Meeting, Vol. 2, pp. 1408-1420. Reno, Neveda (2006). doi:10.2514/6.2006-112
[80] Persson, P. O.: Shock capturing for high-order discontinuous Galerkin simulation of transient flow problems. In: 21st AIAA computational fluid dynamics conference, p. 3061. San Diego, CA (2013). doi:10.2514/6.2013-3061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.