×

A matrix-free macro-element variant of the hybridized discontinuous Galerkin method. (English) Zbl 07772318

Summary: We investigate a macro-element variant of the hybridized discontinuous Galerkin (HDG) method, using patches of standard simplicial elements that can have non-matching interfaces. Coupled via the HDG technique, our method enables local refinement by uniform simplicial subdivision of each macro-element. By enforcing one spatial discretization for all macro-elements, we arrive at local problems per macro-element that are embarrassingly parallel, yet well balanced. Therefore, our macro-element variant scales efficiently to n-node clusters and can be tailored to available hardware by adjusting the local problem size to the capacity of a single node, while still using moderate polynomial orders such as quadratics or cubics. Increasing the local problem size means simultaneously decreasing, in relative terms, the global problem size, hence effectively limiting the proliferation of degrees of freedom. The global problem is solved via a matrix-free iterative technique that also heavily relies on macro-element local operations. We investigate and discuss the advantages and limitations of the macro-element HDG method via an advection-diffusion model problem.
© 2023 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons Ltd.

MSC:

65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65Y05 Parallel numerical computation
76M10 Finite element methods applied to problems in fluid mechanics
35Q35 PDEs in connection with fluid mechanics

Software:

PETSc

References:

[1] ArnoldDN, BrezziF, CockburnB, MariniLD. Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J Numer Anal. 2002;39(5):1749‐1779. · Zbl 1008.65080
[2] BassiF, RebayS. A high‐order accurate discontinuous finite element method for the numerical solution of the compressible Navier-stokes equations. J Comput Phys. 1997;131(2):267‐279. · Zbl 0871.76040
[3] CockburnB. Discontinuous Galerkin methods for computational fluid dynamics. Encyclopedia of Computational Mechanics. Second ed. Encyclopedia of Computational Mechanics; 2018:1‐63.
[4] HesthavenJS, WarburtonT. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer Science & Business Media; 2007.
[5] PeraireJ, PerssonPO. The compact discontinuous Galerkin (CDG) method for elliptic problems. SIAM J Sci Comput. 2008;30(4):1806‐1824. · Zbl 1167.65436
[6] CockburnB, GopalakrishnanJ, LazarovR. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J Numer Anal. 2009;47(2):1319‐1365. · Zbl 1205.65312
[7] NguyenNC, PeraireJ, CockburnB. An implicit high‐order hybridizable discontinuous Galerkin method for linear convection-diffusion equations. J Comput Phys. 2009;228(9):3232‐3254. · Zbl 1187.65110
[8] CockburnB, GuzmánJ, WangH. Superconvergent discontinuous Galerkin methods for second‐order elliptic problems. Math Comput. 2009;78(265):1‐24. · Zbl 1198.65194
[9] NguyenNC, PeraireJ. Hybridizable discontinuous Galerkin methods for partial differential equations in continuum mechanics. J Comput Phys. 2012;231(18):5955‐5988. · Zbl 1277.65082
[10] NguyenNC, PeraireJ, CockburnB. A hybridizable discontinuous Galerkin method for stokes flow. Comput Methods Appl Mech Eng. 2010;199(9‐12):582‐597. · Zbl 1227.76036
[11] PeraireJ, NguyenN, CockburnB. A hybridizable discontinuous Galerkin method for the compressible Euler and Navier‐stokes equations. 2010 363.
[12] CockburnB. Static Condensation, Hybridization, and the Devising of the HDG Methods. Springer; 2016:129‐177. · Zbl 1357.65256
[13] CockburnB, DongB, GuzmánJ, RestelliM, SaccoR. A hybridizable discontinuous Galerkin method for steady‐state convection‐diffusion‐reaction problems. SIAM J Sci Comput. 2009;31(5):3827‐3846. · Zbl 1200.65093
[14] NguyenN, PeraireJ, CockburnB. An implicit high‐order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations. J Comput Phys. 2009;228(23):8841‐8855. doi:10.1016/j.jcp.2009.08.030 · Zbl 1177.65150
[15] NguyenNC, PeraireJ, CockburnB. An implicit high‐order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations. J Comput Phys. 2011;230(4):1147‐1170. · Zbl 1391.76353
[16] FernandezP, NguyenN, PeraireJ. The hybridized discontinuous Galerkin method for implicit large‐Eddy simulation of transitional turbulent flows. J Comput Phys. 2017;336:308‐329. doi:10.1016/j.jcp.2017.02.015 · Zbl 1375.76069
[17] Vila‐PérezJ, GiacominiM, SevillaR, HuertaA. Hybridisable discontinuous Galerkin formulation of compressible flows. Arch Comput Methods Eng. 2021;28(2):753‐784.
[18] NguyenNC, PeraireJ, CockburnB. High‐order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics. J Comput Phys. 2011;230(10):3695‐3718. · Zbl 1364.76093
[19] La SpinaA, KronbichlerM, GiacominiM, WallWA, HuertaA. A weakly compressible hybridizable discontinuous Galerkin formulation for fluid-structure interaction problems. Comput Methods Appl Mech Eng. 2020;372:113392. · Zbl 1506.74415
[20] FoucartC, MirabitoC, HaleyPJ, LermusiauxPF. Distributed implementation and verification of hybridizable discontinuous Galerkin methods for nonhydrostatic ocean processes. Paper presented at: IEEE. 2018 1‐8.
[21] PaznerW, PerssonPO. Stage‐parallel fully implicit Runge-Kutta solvers for discontinuous Galerkin fluid simulations. J Comput Phys. 2017;335:700‐717. · Zbl 1375.76164
[22] FabienMS, KnepleyMG, MillsRT, RivièreBM. Manycore parallel computing for a hybridizable discontinuous Galerkin nested multigrid method. SIAM J Sci Comput. 2019;41(2):C73‐C96. · Zbl 1412.65129
[23] KronbichlerM, WallWA. A performance comparison of continuous and discontinuous Galerkin methods with fast multigrid solvers. SIAM J Sci Comput. 2018;40(5):A3423‐A3448. · Zbl 1402.65163
[24] RocaX, NguyenC, PeraireJ. Scalable Parallelization of the Hybridized Discontinuous Galerkin Method for Compressible Flow. 21st AIAA Computational Fluid Dynamics; 2013:2939.
[25] RocaX, NguyenNC, PeraireJ. GPU‐Accelerated Sparse Matrix‐Vector Product for a Hybridizable Discontinuous Galerkin Method. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition; 2011:687.
[26] HughesTJ. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Courier Corporation; 2012.
[27] PaipuriM, TiagoC, Fernández‐MéndezS. Coupling of continuous and hybridizable discontinuous Galerkin methods: application to conjugate heat transfer problem. J Sci Comput. 2019;78(1):321‐350. · Zbl 1422.65407
[28] HuertaA, AngeloskiA, RocaX, PeraireJ. Efficiency of high‐order elements for continuous and discontinuous Galerkin methods. Int J Numer Methods Eng. 2013;96(9):529‐560. · Zbl 1352.65512
[29] KirbyRM, SherwinSJ, CockburnB. To CG or to HDG: a comparative study. J Sci Comput. 2012;51(1):183‐212. · Zbl 1244.65174
[30] YakovlevS, MoxeyD, KirbyRM, SherwinSJ. To CG or to HDG: a comparative study in 3D. J Sci Comput. 2016;67(1):192‐220. · Zbl 1339.65225
[31] ArbogastT, CowsarLC, WheelerMF, YotovI. Mixed finite element methods on nonmatching multiblock grids. SIAM J Numer Anal. 2000;37(4):1295‐1315. · Zbl 1001.65126
[32] BelgacemFB. The mortar finite element method with Lagrange multipliers. Numer Math. 1999;84(2):173‐197. · Zbl 0944.65114
[33] KlawonnA, WidlundOB. Dual‐primal FETI methods for linear elasticity. Commun Pure Appl Math: J Courant Inst Math Sci. 2006;59(11):1523‐1572. · Zbl 1110.74053
[34] BertsekasDP. Constrained Optimization and Lagrange Multiplier Methods. Academic Press; 2014.
[35] ToselliA, WidlundO. Domain Decomposition Methods‐Algorithms and Theory. Vol 34. Springer Science & Business Media; 2004.
[36] ToselliA. FETI domain decomposition methods for scalar advection-diffusion problems. Comput Methods Appl Mech Eng. 2001;190(43‐44):5759‐5776. · Zbl 1017.76048
[37] BrooksA, HughesTJR. Streamline‐upwind/petrov‐Galerkin methods for advection dominated flows. 1980.
[38] BrooksAN, HughesTJ. Streamline upwind/Petrov‐Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier‐Stokes equations. Comput Methods Appl Mech Eng. 1982;32(1‐3):199‐259. · Zbl 0497.76041
[39] ChristieI, GriffithsDF, MitchellAR, ZienkiewiczOC. Finite element methods for second order differential equations with significant first derivatives. Int J Numer Methods Eng. 1976;10(6):1389‐1396. · Zbl 0342.65065
[40] DoneaJ, HuertaA. Finite Element Methods for Flow Problems. John Wiley & Sons; 2003.
[41] HeinrichJC, HuyakornPS, ZienkiewiczOC, MitchellA. An ’upwind’ finite element scheme for two‐dimensional convective transport equation. Int J Numer Methods Eng. 1977;11(1):131‐143. · Zbl 0353.65065
[42] NguyenL, StoterS, BaumT, et al. Phase‐field boundary conditions for the voxel finite cell method: surface‐free stress analysis of CT‐based bone structures. Int J Numer Methods Biomed Eng. 2017;33(12):e2880.
[43] SamiiA, MichoskiC, DawsonC. A parallel and adaptive hybridized discontinuous Galerkin method for anisotropic nonhomogeneous diffusion. Comput Methods Appl Mech Eng. 2016;304:118‐139. · Zbl 1423.76272
[44] ZhengG. Achieving High Performance on Extremely Large Parallel Machines: Performance Prediction and Load Balancing. University of Illinois at Urbana‐Champaign; 2005.
[45] VymazalM, MoxeyD, CantwellC, SherwinS, KirbyRM. Combined CG‐HDG Method for Elliptic Problems: Performance Model. arXiv preprint arXiv:1811.11855. 2018.
[46] DavisTA. Algorithm 832: UMFPACK V4. 3—an unsymmetric‐pattern multifrontal method. ACM Trans Math Softw. 2004;30(2):196‐199. · Zbl 1072.65037
[47] BalayS, AbhyankarS, AdamsM, et al. PETSc users manual. 2019.
[48] DiosadyLT. Domain Decomposition Preconditioners for Higher‐Order Discontinuous Galerkin Discretizations. PhD thesis. Massachusetts Institute of Technology; 2011.
[49] FrancioliniM, FidkowskiKJ, CrivelliniA. Efficient discontinuous Galerkin implementations and preconditioners for implicit unsteady compressible flow simulations. Comput Fluids. 2020;203:104542. · Zbl 1519.76143
[50] KronbichlerM, KormannK. A generic interface for parallel cell‐based finite element operator application. Comput Fluids. 2012;63:135‐147. · Zbl 1365.76121
[51] KronbichlerM, KormannK. Fast matrix‐free evaluation of discontinuous Galerkin finite element operators. ACM Trans Math Softw. 2019;45(3):1‐40. · Zbl 1486.65253
[52] KronbichlerM, SashkoD, MunchP. Enhancing data locality of the conjugate gradient method for high‐order matrix‐free finite‐element implementations. Int J High Perform Comput Appl. 2022;10943420221107880. doi:10.48550/arxiv.2205.08909
[53] NguyenNC, PeraireJ, CockburnB. A class of embedded discontinuous Galerkin methods for computational fluid dynamics. J Comput Phys. 2015;302:674‐692. · Zbl 1349.76245
[54] FischerP, MinM, RathnayakeT, et al. Scalability of high‐performance PDE solvers. Int J High Perform Comput Appl. 2020;34(5):562‐586.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.