×

Development of a parallelised fluid solver for problems with mesh interfaces and deforming domains. (English) Zbl 1390.76390

Summary: Numerical simulation of piston-cylinder problems such as internal combustion engines suffers from two difficulties related to discretization: the non-matching interfaces between cylinder and ports and the large deformation of the cylinder region. In this context, this paper presents a parallelized computational strategy, based on the finite volume method, where the mentioned issues are overcome. The non-matching discretization between regions is addressed with a new methodology which integrates the arbitrary coupled mesh interface (ACMI) method with the pseudo-supermesh approach to couple conservatively mesh interfaces with partial overlapping. For the large cylinder deformations, a layer addition/removal strategy is enhanced with mesh deformation to improve the handling of the mesh resolution. All methodologies are integrated and implemented for parallel computing obtaining a good scalability and computational efficiency. Specific examples are solved to analyse the performance of the new interface method and layering working separately and finally, the combination of both strategies is tested solving an internal combustion engine problem where the robustness of this dynamic mesh proposal is evaluated.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
65Y05 Parallel numerical computation
76V05 Reaction effects in flows

Software:

GitHub; OpenFOAM; KIVA-4
Full Text: DOI

References:

[1] Blom, F., Considerations on the spring analogy, Int J Numer Methods Fluids, 32, 6, 647-688, (2000) · Zbl 0981.76067
[2] Löhner, R.; Yang, C., Improved ALE mesh velocities for moving bodies, Commun Numer Methods Eng, 12, 10, 599-608, (1998) · Zbl 0858.76042
[3] Johnson, A.; Tezduyar, T., Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces, Comput Methods Appl Mech Eng, 119, 1, 73-94, (1994) · Zbl 0848.76036
[4] López, E.; Nigro, N.; Storti, M. A.; Toth, J., A minimal element distortion strategy for computational mesh dynamics, Int J Numer Methods Eng, 69, 9, 1898-1929, (2007) · Zbl 1194.76127
[5] Helenbrook, B., Mesh deformation using the biharmonic operator, Int J Numer Methods Eng, 56, 7, 1007-1021, (2003) · Zbl 1047.76044
[6] Moyle, K.; Ventikos, Y., Local remeshing for large amplitude grid deformations, J Comput Phys, 227, 5, 2781-2793, (2008) · Zbl 1193.74037
[7] Menon, S.; Mooney, K. G.; Stapf, K.; Schmidt, D. P., Parallel adaptive simplical re-meshing for deforming domain CFD computations, J Comput Phys, 298, 62-78, (2015) · Zbl 1349.76005
[8] Grandy, J., Conservative remapping and region overlays by intersecting arbitrary polyhedra, J Comput Phys, 148, 2, 433-466, (1999) · Zbl 0932.76073
[9] Menon, S.; Schmidt, D., Conservative interpolation on unstructured polyhedral meshes: an extension of the supermesh approach to cell-centered finite-volume variables, Comput Methods Appl Mech Eng, 200, 41, 2797-2804, (2011) · Zbl 1230.76034
[10] Lucchini, T.; D’Errico, G.; Jasak, H.; Tukovic, Z., Automatic mesh motion with topological changes for engine simulation, Tech. Rep., (2007), SAE Technical Paper
[11] Vissers, A., Port size, geometry and layout design in a Two-Stroke JaqEngine, (2007), Eindhoven University of Technology Eindhoven, The Netherlands, Master’s thesis
[12] Johnsson, M., Stratified scavenging computations in two-stroke engines using OpenFOAM, (2010), Chalmers University of Technology Goteborg, Sweden, Master’s thesis
[13] Varol, Y.; Oztop, H.; Firat, M.; Koca, A., CFD modeling of heat transfer and fluid flow inside a pent-roof type combustion chamber using dynamic model, Int Commun Heat Mass Transfer, 37, 9, 1366-1375, (2010)
[14] Gundmalm, S., CFD modeling of a four stroke S.I. engine for motorcycle application, (2009), KTH Industrial Engineering and Management Stockholm, Sweden, Master’s thesis
[15] Semin, N.; Ibrahim, R.; Abdul, R., In-cylinder flow through piston-port engines modeling using dynamic mesh, J Appl Sci Res, 4, 1, 58-64, (2008)
[16] Keskinen, J.-P.; Vuorinen, V.; Kaario, O.; Larmi, M., Large eddy simulation of a piston cylinder assembly: the sensitivity of the in-cylinder flow field for residual intake and in-cylinder velocity structures, Comput Fluids, 122, 123-135, (2015) · Zbl 1390.76175
[17] Piscaglia, F.; Montorfano, A.; Onorati, A., Development of fully-automatic parallel algorithms for mesh handling in the openfoam-2.2.x technology, Technical Paper, (2013), SAE
[18] Piscaglia, F.; Montorfano, A.; Onorati, A., A moving mesh strategy to perform adaptive large eddy simulation of IC engines in openfoam, Proceedings of the international multidimensional engine modeling user’s group meeting. The Detroit downtown courtyard by Marriott Hotel, Detroit, MI (USA), (2014)
[19] Piscaglia F., Montorfano A., Onorati A., Aithal S. Congress: International Multidimensional Engine Modeling User’s Group Meeting At the SAE Congress; Place: Detroir, EEUU; 2015.; Piscaglia F., Montorfano A., Onorati A., Aithal S. Congress: International Multidimensional Engine Modeling User’s Group Meeting At the SAE Congress; Place: Detroir, EEUU; 2015. · Zbl 1371.76098
[20] Qin, N.; Carnie, G.; LeMoigne, A.; Liu, X.; Shahpar, S., Buffer layer method for linking two non-matching multi-block structured grids, Proceedings of the forty-seventh AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, Orlando, FL, January, 5-8, (2009)
[21] Wang, Y.; Qin, N.; Carnie, G.; Shahpar, S., Zipper layer method for linking two dissimilar structured meshes, J Comput Phys, 255, 130-148, (2013) · Zbl 1349.65672
[22] Rai, M. M., Navier-Stokes simulations of rotor/stator interaction using patched and overlaid grids, J Propul Power, 3, 5, 387-396, (1987)
[23] Walters, R.; Switzer, G.; Thomas, J., Aspects and applications of patched grid calculations, AIAA J, 29, 5, 676-677, (1991)
[24] Zhang, Y.; Chen, H.; Fu, S., Improvement to patched grid technique with high-order conservative remapping method, J Aircr, 48, 3, 884-893, (2011)
[25] Blades, E. L.; Marcum, D. L., A sliding interface method for unsteady unstructured flow simulations, Int J Numer Methods Fluids, 53, 3, 507-529, (2007) · Zbl 1370.76118
[26] Wang, G.; Duchaine, F.; Papadogiannis, D.; Duran, I.; Moreau, S.; Gicquel, L., An overset grid method for large eddy simulation of turbomachinery stages, J Comput Phys, 274, 333-355, (2014) · Zbl 1351.76039
[27] Houzeaux, G.; Eguzkitza, B.; Aubry, R.; Owen, H.; Vázquez, M., A Chimera method for the incompressible Navier-Stokes equations, Int J Numer Methods Fluids, 75, 3, 155-183, (2014) · Zbl 1455.76084
[28] Mathur, S., Unsteady flow simulations using unstructured sliding meshes, Proceedings of the fluid dynamics conference, 2333, (1994)
[29] Beaudoin, M.; Jasak, H., Development of a generalized grid interface for turbomachinery simulations with openfoam, Proceedings of the open source CFD international conference. Berlin, (2008)
[30] Steijl, R.; Barakos, G., Sliding mesh algorithm for CFD analysis of helicopter rotor-fuselage aerodynamics, Int J Numer Methods Fluids, 58, 5, 527-549, (2008) · Zbl 1167.76033
[31] Loh, C. Y.; To, W. M.; Himansu, A., A conservative treatment of sliding interface for upwind finite volume methods, Proceedings of the forty-seventh AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, 861, (2009)
[32] McNaughton, J.; Afgan, I.; Apsley, D.; Rolfo, S.; Stallard, T.; Stansby, P., A simple sliding-mesh interface procedure and its application to the CFD simulation of a tidal-stream turbine, Int J Numer Methods Fluids, 74, 4, 250-269, (2014) · Zbl 1455.86005
[33] Ramírez, L.; Foulquié, C.; Nogueira, X.; Khelladi, S.; J. C.; Colominas, I., New high-resolution-preserving sliding mesh techniques for higher-order finite volume schemes, J Comput Fluids, 118, 114-130, (2015) · Zbl 1390.76505
[34] OpenFOAM. ACMI source code. https://github.com/OpenFOAM/OpenFOAM-dev/tree/master/src/finiteVolume/fields/fvPatchFields/constraint/cyclicACMI; OpenFOAM. ACMI source code. https://github.com/OpenFOAM/OpenFOAM-dev/tree/master/src/finiteVolume/fields/fvPatchFields/constraint/cyclicACMI
[35] Farrell, P.; Maddison, J., Conservative interpolation between volume meshes by local Galerkin projection, Comput Methods Appl Mech Eng, 200, 89-100, (2011) · Zbl 1225.76193
[36] Rinaldi, E.; Colonna, P.; Pecnik, R., Flux-conserving treatment of non-conformal interfaces for finite-volume discretization of conservation laws, Comput Fluids, 120, 126-139, (2015) · Zbl 1390.76506
[37] Aguerre, H. J.; Márquez Damián, S.; Gimenez, J. M.; Nigro, N. M., Conservative handling of arbitrary non-conformal interfaces using an efficient supermesh, J Comput Phys, 335, 21-49, (2017) · Zbl 1375.76095
[38] Weller, H.; Tabor, G.; Jasak, H.; Fureby, C., A tensorial approach to computational continuum mechanics using object oriented techniques, Comput Phys, 12, 6, 620-631, (1998)
[39] Márquez Damián, S.; Gimenez, J.; Nigro, N., Gdbof: a debugging tool for openfoam(r), Adv Eng Softw, 47, 1, 17-23, (2012)
[40] Farrell, P.; Piggott, M.; Pain, C.; Gorman, G.; Wilson, C., Conservative interpolation between unstructured meshes via supermesh construction, Comput Methods Appl Mech Eng, 198, 2632-2642, (2009) · Zbl 1228.76105
[41] Aguerre, H.; Márquez Damián, S.; Gimenez, J.; Nigro, N., Modeling of compressible fluid problems with openfoam(R) using dynamic mesh technology, Proceedings of the Mecánica Computacional Vol XXXII, 995-1011, (2013)
[42] Hirt, C.; Amsden, A.; Cook, J., An arbitrary-Lagrangian-Eulerian computing method for all flow speeds, J Comput Phys, 135, 203-216, (1997) · Zbl 0938.76068
[43] Jasak, H.; Tuković, Z., Automatic mesh motion for the unstructured finite volume method, Trans FAMENA, 30, 2, 1-18, (2007)
[44] Demirdžić, I.; Perić, M., Space conservation law in finite volume calculations of fluid flow, Int J Numer Methods Fluids, 8, 9, 1037-1050, (1988) · Zbl 0647.76018
[45] Chang, X.; Ma, R.; Zhang, L.; He, X.; Li, M., Further study on the geometric conservation law for finite volume method on dynamic unstructured mesh, Comput Fluids, 120, 98-110, (2015) · Zbl 1390.76409
[46] Tessi, G., Reingeniería de métodos de cálculo paralelo para operaciones sobre mallas dinámicas en OpenFOAM(R), (2015), Facultad de Ingeniería y Ciencias Hídricas, Universidad Nacional del Litoral, Master’s thesis
[47] Armaly, B.; Durst, F.; Pereira, J.; Schönung, B., Experimental and theoretical investigation of backward-facing step flow, J Fluid Mech, 127, 473-496, (1983)
[48] Chiang, T.; Sheu, T., A numerical revisit of backward-facing step flow problem, Phys Fluids, 11, 4, 862-874, (1999) · Zbl 1147.76361
[49] Márquez Damián, S.; Nigro, N., Comparison of single phase laminar and large eddy simulation (LES) solvers using the openfoam(R) suite, Proceedings of the Mecánica Computacional Vol XXIX, 269-289, (2010)
[50] Patankar, S., Numerical heat transfer and fluid flow, (1980), Hemisphere Publishing Company · Zbl 0521.76003
[51] Shyy, W., A study of finite difference approximations to steady-state, convection-dominated flow problems, J Comput Phys, 57, 3, 415-438, (1985) · Zbl 0632.76102
[52] Barth, T. J.; Jespersen, D. C., The design and application of upwind schemes on unstructured meshes, Proceedings of the twenty-seventh AIAA aerospace sciences meeting, Nevada, January, (1989)
[53] Torres, D.; Trujillo, M., Kiva-4: an unstructured ALE code for compressible gas flow with sprays, J Comput Phys, 219, 2, 943-975, (2006) · Zbl 1330.76105
[54] Sutherland, W., The viscosity of gases and molecular force, Lond Edinb Dublin Philosop Mag J Sci, 36, 223, 507-531, (1893) · JFM 25.1544.01
[55] Launder, B.; Spalding, D., The numerical computation of turbulent flows, Comput Methods Appl Mech Eng, 3, 2, 269-289, (1974) · Zbl 0277.76049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.