×

Phase-field modeling of multivariant martensitic transformation at finite-strain: computational aspects and large-scale finite-element simulations. (English) Zbl 1506.74242

Summary: Large-scale 3D martensitic microstructure evolution problems are studied using a finite-element discretization of a finite-strain phase-field model. The model admits an arbitrary crystallography of transformation and arbitrary elastic anisotropy of the phases, and incorporates Hencky-type elasticity, a penalty-regularized double-obstacle potential, and viscous dissipation. The finite-element discretization of the model is performed in Firedrake and relies on the PETSc solver library. The large systems of linear equations arising are efficiently solved using GMRES and a geometric multigrid preconditioner with a carefully chosen relaxation. The modeling capabilities are illustrated through a 3D simulation of the microstructure evolution in a pseudoelastic CuAlNi single crystal during nano-indentation, with all six orthorhombic martensite variants taken into account. Robustness and a good parallel scaling performance have been demonstrated, with the problem size reaching 150 million degrees of freedom.

MSC:

74N15 Analysis of microstructure in solids
74S05 Finite element methods applied to problems in solid mechanics

References:

[1] Chen, L. Q., Phase-field models for microstructure evolution, Ann. Rev. Mater. Res., 32, 113-140 (2002)
[2] Moelans, N.; Blanpain, B.; Wollants, P., An introduction to phase-field modeling of microstructure evolution, CALPHAD, 32, 268-294 (2008)
[3] Steinbach, I., Phase-field models in materials science, Modelling Simul. Mater. Sci. Eng., 17, Article 073001 pp. (2009)
[4] Wang, Y.; Li, J., Phase field modeling of defects and deformation, Acta Mater., 58, 1212-1235 (2010)
[5] Provatas, N.; Elder, K., Phase-field Methods in Materials Science and Engineering (2010), Wiley-VCH
[6] Wang, Y.; Khachaturyan, A. G., Three-dimensional field model and computer modeling of martensitic transformations, Acta Mater., 45, 759-773 (1997)
[7] Artemev, A.; Wang, Y.; Khachaturyan, A. G., Three-dimensional phase field model and simulation of martensitic transformation in multilayer systems under applied stresses, Acta Mater., 48, 2503-2518 (2000)
[8] Jin, Y. M.; Artemev, A.; Khachaturyan, A. G., Three-dimensional phase field model of low-symmetry martensitic transformation in polycrystal: simulation of \(\zeta_2^\prime\) martensite in AuCd alloys, Acta Mater., 49, 2309-2320 (2001)
[9] Wen, Y.; Wang, Y.; Chen, L.-Q., Phase-field simulation of domain structure evolution during a coherent hexagonal-to-orthorhombic transformation, Phil. Mag. A, 80, 9, 1967-1982 (2000)
[10] Li, Y. L.; Hu, S. Y.; Liu, Z. K.; Chen, L. Q., Phase-field model of domain structures in ferroelectric thin films, Appl. Phys. Lett., 78, 24, 3878-3880 (2001)
[11] Levitas, V. I.; Preston, D. L., Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. I. austenite \(\leftrightarrow\) martensite, Phys. Rev. B, 66, Article 134206 pp. (2002)
[12] Ahluwalia, R.; Lookman, T.; Saxena, A.; Albers, R. C., Landau theory for shape memory polycrystals, Acta Mater., 52, 209-218 (2004)
[13] Shu, Y. C.; Yen, J. H., Multivariant model of martensitic microstructure in thin films, Acta Mater., 56, 15, 3969-3981 (2008)
[14] Levitas, V. I.; Levin, V. A.; Zingerman, K. M.; Freiman, E. I., Displacive phase transitions at large strains: phase-field theory and simulations, Phys. Rev. Lett., 103, Article 025702 pp. (2009)
[15] Lei, C. H.; Li, L. J.; Shu, Y. C.; Li, J. Y., Austenite-martensite interface in shape memory alloys, Appl. Phys. Lett., 96, Article 141910 pp. (2010)
[16] Hildebrand, F. E.; Miehe, C., A phase field model for the formation and evolution of martensitic laminate microstructure at finite strains, Phil. Mag., 92, 4250-4290 (2012)
[17] She, H.; Liu, Y.; Wang, B.; Ma, D., Finite element simulation of phase field model for nanoscale martensitic transformation, Comput. Mech., 52, 949-958 (2013) · Zbl 1311.74129
[18] Borukhovich, E.; Engels, P.; Böhlke, T.; Shchyglo, O.; Steinbach, I., Large strain elasto-plasticity for diffuse interface models, Modelling Simul. Mater. Sci. Eng., 22, Article 034008 pp. (2014)
[19] Tůma, K.; Stupkiewicz, S.; Petryk, H., Size effects in martensitic microstructures: Finite-strain phase field model versus sharp-interface approach, J. Mech. Phys. Solids, 95, 284-307 (2016)
[20] Zhong, Y.; Zhu, T., Phase-field modeling of martensitic microstructure in NiTi shape memory alloys, Acta Mater., 75, 337-347 (2014)
[21] Zhao, P.; Low, T. S.E.; Wang, Y.; Niezgoda, S. R., Finite strain phase-field microelasticity theory for modeling microstructural evolution, Acta Mater., 191, 253-269 (2020)
[22] Chen, L. Q.; Shen, J., Applications of semi-implicit Fourier-spectral method to phase field equations, Comput. Phys. Comm., 108, 147-158 (1998) · Zbl 1017.65533
[23] Clayton, J. D.; Knap, J., A phase field model of deformation twinning: Nonlinear theory and numerical simulations, Physica D, 240, 841-858 (2011) · Zbl 1211.74051
[24] Bartels, A.; Mosler, J., Efficient variational constitutive updates for Allen-Cahn-type phase field theory coupled to continuum mechanics, Comput. Methods Appl. Mech. Engrg., 317, 55-83 (2017) · Zbl 1439.74246
[25] Basak, A.; Levitas, V. I., Finite element procedure and simulations for a multiphase phase field approach to martensitic phase transformations at large strains and with interfacial stresses, Comput. Methods Appl. Mech. Engrg., 343, 368-406 (2019) · Zbl 1440.74262
[26] Eisenlohr, P.; Diehl, M.; Lebensohn, R. A.; Roters, F., A spectral method solution to crystal elasto-viscoplasticity at finite strains, Int. J. Plast., 46, 37-53 (2013)
[27] Schneider, M.; Merkert, D.; Kabel, M., FFT-based homogenization for microstructures discretized by linear hexahedral elements, Internat. J. Numer. Methods Engrg., 109, 1461-1489 (2017) · Zbl 1378.74056
[28] Zeman, J.; de Geus, T. W.; Vondřejc, J.; Peerlings, R. H.; Geers, M. G., A finite element perspective on nonlinear FFT-based micromechanical simulations, Internat. J. Numer. Methods Engrg., 111, 903-926 (2017) · Zbl 07867079
[29] Bhattacharya, K., Microstructure of Martensite: Why it Forms and How it Gives Rise to the Shape-memory Effect (2003), Oxford University Press: Oxford University Press Oxford · Zbl 1109.74002
[30] Levitas, V. I.; Javanbakht, M., Surface tension and energy in multivariant martensitic transformations: Phase-field theory, simulations, and model of coherent interface, Phys. Rev. Lett., 105, Article 165701 pp. (2010)
[31] Yeddu, H. K.; Malik, A.; Ågren, J.; Amberg, G.; Borgenstam, A., Three-dimensional phase-field modeling of martensitic microstructure evolution in steels, Acta Mater., 60, 1538-1547 (2012)
[32] Schmitt, R.; Müller, R.; Kuhn, C.; Urbassek, H. M., A phase field approach for multivariant martensitic transformations of stable and metastable phases, Arch. Appl. Mech., 83, 6, 849-859 (2013) · Zbl 1293.74338
[33] Cui, S.; Wan, J.; Rong, Y.; Zhang, J., Phase-field simulations of thermomechanical behavior of MnNi shape memory alloys using finite element method, Comput. Mater. Sci., 139, 285-294 (2017)
[34] Mamivand, M.; Asle Zaeem, M.; El Kadiri, H.; Chen, L.-Q., Phase field modeling of the tetragonal-to-monoclinic phase transformation in zirconia, Acta Mater., 61, 5223-5235 (2013)
[35] Cissé, C.; Asle Zaeem, M., Transformation-induced fracture toughening in CuAlBe shape memory alloys: A phase-field study, Int. J. Mech. Sci., 192, Article 106144 pp. (2021)
[36] Dhote, R. P.; Gomez, H.; Melnik, R. N.V.; Zu, J., 3D coupled thermo-mechanical phase-field modeling of shape memory alloy dynamics via isogeometric analysis, Comput. Struct., 154, 48-58 (2015)
[37] Mahnken, R., Goal-oriented adaptive refinement for phase field modeling with finite elements, Internat. J. Numer. Methods Engrg., 94, 418-440 (2013) · Zbl 1352.80010
[38] Wei, C.; Ke, C.; Liang, S.; Cao, S.; Ma, H.; Zhang, X., An improved phase field method by using statistical learning theory-based optimization algorithm for simulation of martensitic transformation in NiTi alloy, Comput. Mater. Sci., 172, Article 109292 pp. (2020)
[39] Kochmann, J.; Wulfinghoff, S.; Reese, S.; Mianroodi, J. R.; Svendsen, B., Two-scale FE-FFT-and phase-field-based computational modeling of bulk microstructural evolution and macroscopic material behavior, Comput. Methods Appl. Mech. Engrg., 305, 89-110 (2016) · Zbl 1425.74477
[40] Rezaee-Hajidehi, M.; Stupkiewicz, S., Phase-field modeling of multivariant martensitic microstructures and size effects in nano-indentation, Mech. Mat., 141, Article 103267 pp. (2020)
[41] Rathgeber, F.; Ham, D. A.; Mitchell, L.; Lange, M.; Luporini, F.; McRae, A. T.T.; Bercea, G.-T.; Markall, G. R.; Kelly, P. H.J., Firedrake: automating the finite element method by composing abstractions, ACM Trans. Math. Software, 43, 1-27 (2016) · Zbl 1396.65144
[42] Balay, S.; Abhyankar, S.; Adams, M. F.; Brown, J.; Brune, P.; Buschelman, K.; Dalcin, L.; Dener, A.; Eijkhout, V.; Gropp, W. D.; Kaushik, D.; Knepley, M. G.; May, D. A.; McInnes, L. C.; Mills, R. T.; Munson, T.; Rupp, K.; Sanan, P.; Smith, B. F.; Zampini, S.; Zhang, H.; Zhang, H., PETSC Users ManualTech. Rep. ANL-95/11 - Revision 3.11 (2019), Argonne National Laboratory
[43] Rezaee-Hajidehi, M.; Tůma, K.; Stupkiewicz, S., A note on Padé approximants of tensor logarithm with application to hencky-type hyperelasticity, Comput. Mech. (2020)
[44] Levitas, V. I., Phase field approach for stress-and temperature-induced phase transformations that satisfies lattice instability conditions. Part I. General theory, Int. J. Plast., 106, 164-185 (2018)
[45] Basak, A.; Levitas, V. I., Interfacial stresses within boundary between martensitic variants: Analytical and numerical finite strain solutions for three phase field models, Acta Mater., 139, 174-187 (2017)
[46] Maciejewski, G.; Stupkiewicz, S.; Petryk, H., Elastic micro-strain energy at the austenite-twinned martensite interface, Arch. Mech., 57, 277-297 (2005) · Zbl 1105.74032
[47] Tůma, K.; Stupkiewicz, S., Phase-field study of size-dependent morphology of austenite-twinned martensite interface in CuAlNi, Int. J. Solids Struct., 97, 89-100 (2016)
[48] Raoult, A., Non-polyconvexity of the stored energy function of a Saint Venant-Kirchhoff material, Apl. Mat., 31, 417-419 (1986) · Zbl 0608.73023
[49] Schrøder, J.; Neff, P., Poly-, Quasi-and Rank-One Convexity in Applied Mechanics (2009), CISM-Course Udine, Springer
[50] Neff, P.; Ghiba, I.-D., The exponentiated Hencky-logarithmic strain energy: part III—coupling with idealized multiplicative isotropic finite strain plasticity, Contin. Mech. Thermodyn., 28, 477-487 (2016) · Zbl 1348.74053
[51] Tůma, K.; Stupkiewicz, S.; Petryk, H., Rate-independent dissipation in phase-field modelling of displacive transformations, J. Mech. Phys. Solids, 114, 117-142 (2018) · Zbl 1441.74147
[52] Wriggers, P., Computational Contact Mechanics (2006), Springer: Springer Berlin Heidelberg New York · Zbl 1104.74002
[53] Saad, Y.; Schultz, M. H., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856-869 (1986) · Zbl 0599.65018
[54] Trottenberg, U.; Oosterlee, C.; Schüller, A., Multigrid (2001), Academic Press: Academic Press San Diego · Zbl 0976.65106
[55] Baker, G. A.; Graves-Morris, P., Padé Approximants (1996), Cambridge University Press: Cambridge University Press Cambridge-New-York · Zbl 0923.41001
[56] Ortiz, M.; Radovitzky, R. A.; Repetto, E. A., The computation of the exponential and logarithmic mappings and their first and second linearizations, Internat. J. Numer. Methods Engrg., 52, 1431-1441 (2001) · Zbl 0995.65053
[57] de Souza Neto, E. A., The exact derivative of the exponential of an unsymmetric tensor, Comput. Methods Appl. Mech. Engrg., 190, 2377-2383 (2001) · Zbl 0989.65044
[58] Korelc, J.; Wriggers, P., Automation of Finite Element Methods (2016), Springer International Publishing: Springer International Publishing Switzerland · Zbl 1367.74001
[59] Alnæs, M. S.; Logg, A.; Ølgaard, K. B.; Rognes, M. E.; Wells, G. N., Unified form language: A domain-specific language for weak formulations of partial differential equations, ACM Trans. Math. Software, 40, 9:1-9:37 (2014) · Zbl 1308.65175
[60] Brown, J.; Knepley, M.; May, D.; McInnes, L.; Smith, B., Composable linear solvers for multiphysics, (2012 11th International Symposium on Parallel and Distributed Computing (ISPDC) (2012)), 55-62
[61] Kirby, R. C.; Mitchell, L., Solver composition across the PDE/linear algebra barrier, SIAM J. Sci. Comput., 40, C76-C98 (2018) · Zbl 1383.65021
[62] Amestoy, P. R.; Duff, I. S.; Koster, J.; L’Excellent, J.-Y., A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23, 15-41 (2001) · Zbl 0992.65018
[63] Barbora supercomputer webpage (2020), URL https://docs.it4i.cz/barbora/introduction/
[64] Suezawa, M.; Sumino, K., Behaviour of elastic constants in Cu-Al-Ni alloy in the close vicinity of M \({}_{\text{s}} \)-point, Scr. Metall., 10, 789-792 (1976)
[65] Yasunaga, M.; Funatsu, Y.; Kojima, S.; Otsuka, K.; Suzuki, T., Measurement of elastic constants, Scr. Metall., 17, 1091-1094 (1983)
[66] Petryk, H.; Stupkiewicz, S.; Maciejewski, G., Interfacial energy and dissipation in martensitic phase transformations. Part II: Size effects in pseudoelasticity, J. Mech. Phys. Solids, 58, 373-389 (2010) · Zbl 1193.74047
[67] Levitas, V. I.; Javanbakht, M., Phase-field approach to martensitic phase transformations: effect of martensite-martensite interface energy, Int. J. Mater. Res., 102, 6, 652-665 (2011)
[68] Caër, C.; Patoor, E.; Berbenni, S.; Lecomte, J.-S., Stress induced pop-in and pop-out nanoindentation events in CuAlBe shape memory alloys, Mater. Sci. Eng. A, 587, 304-312 (2013)
[69] Laplanche, G.; Pfetzing-Micklich, J.; Eggeler, G., Sudden stress-induced transformation events during nanoindentation of NiTi shape memory alloys, Acta Mater., 78, 144-160 (2014)
[70] Dar, R. D.; Chen, Y., Nanoscale martensitic phase transition at interfaces in shape memory materials, Appl. Phys. Lett., 110, Article 041906 pp. (2017)
[71] Stupkiewicz, S.; Maciejewski, G.; Petryk, H., Low-energy morphology of the interface layer between austenite and twinned martensite, Acta Mater., 55, 6292-6306 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.