×

Log-symmetric quantile regression models. (English) Zbl 07778517

Summary: Regression models based on the log-symmetric family of distributions are particularly useful when the response variable is continuous, positive, and asymmetrically distributed. In this article, we propose and derive a class of models based on a new approach to quantile regression using log-symmetric distributions parameterized by means of their quantiles. Two Monte Carlo simulation studies are conducted utilizing the R software. The first one analyzes the performance of the maximum likelihood estimators, the Akaike, Bayesian, and corrected Akaike information criteria, and the generalized Cox-Snell and random quantile residuals. The second one evaluates the size and power of the Wald, likelihood ratio, score, and gradient tests. A web-scraped box-office data set of the movie industry is analyzed to illustrate the proposed approach. Within the main results of the simulation carried out, the good performance of the maximum likelihood estimators is reported.
{© 2021 Netherlands Society for Statistics and Operations Research}

MSC:

62-XX Statistics
62Jxx Linear inference, regression
62Fxx Parametric inference

Software:

ssym; alr4; R; alr3

References:

[1] Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716-723. · Zbl 0314.62039
[2] Amin, M., Song, L., Thorlie, M. A., & Wang, X. (2015). SCAD‐penalized quantile regression for high‐dimensional data analysis and variable selection. Statistica Neerlandica, 69, 212-235. · Zbl 1541.62086
[3] Athayde, E., Azevedo, A., Barros, M., & Leiva, V. (2019). Failure rate of Birnbaum‐Saunders distributions: shape, change‐point, estimation and robustness. Brazilian Journal of Probability and Statistics, 33, 301-328. · Zbl 1419.62025
[4] Austin, P., Tu, J., Daly, P., & Alter, D. (2005). The use of quantile regression in health care research: A case study examining gender differences in the timeliness of thrombolytic therapy. Statistics in Medicine, 24, 791-816.
[5] Bhatti, C. (2010). The Birnbaum‐Saunders autoregressive conditional duration model. Mathematics and Computers in Simulation, 80, 2062-2078. · Zbl 1195.62136
[6] Bourguignon, M., & Gallardo, D. I. (2020). Reparameterized inverse gamma regression models with varying precision. Statistica Neerlandica, 74, 611-627. · Zbl 1541.62154
[7] Bozdogan, H. (1987). Model selection and Akaike’s information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52, 345-370. · Zbl 0627.62005
[8] Buchinsky, M. (1994). Changes in the U.S. wage structure 1963‐1987: Application of quantile regression. Econometrica, 62, 405-458. · Zbl 0800.90235
[9] Cade, B. S., Terrell, J. W., & Schroeder, R. L. (1999). Estimating effects of limiting factors with regression quantiles. Ecology, 80, 311-323.
[10] Core Team, R. (2020). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
[11] Cox, D. R., & Snell, E. (1968). A general definition of residuals. Journal of the Royal Statistical Society B, 2, 248-275. · Zbl 0164.48903
[12] D’Agostino, R. B., & Stephens, M. A. (1986). Goodness‐of‐fit techniques. New York, NY: Marcel Dekker. · Zbl 0597.62030
[13] Davino, C., Furno, M., & Vistocco, D. (2013). Quantile regression: Theory and applications. New York, NY: Wiley.
[14] de laFuente‐Mella, H., Rojas Fuentes, J. L., & Leiva, V. (2020). Econometric modeling of productivity and technical efficiency in the Chilean manufacturing industry. Computers and Industrial Engineering, 139, 105793.
[15] Dunn, P., & Smyth, G. (1996). Randomized quantile residuals. Journal of Computational and Graphical Statistics, 5, 236-244.
[16] Efron, B., & Hinkley, D. V. (1978). Assessing the accuracy of the maximum likelihood estimator: Observed vs. expected Fisher information. Biometrika, 65, 457-487. · Zbl 0401.62002
[17] Fang, K. T., & Anderson, T. W. (1990). Statistical inference in elliptically contoured and related distributions. New York, NY: Allerton Press. · Zbl 0747.00016
[18] Garcia‐Papani, F., Leiva, V., Ruggeri, F., & Uribe‐Opazo, M. A. (2018). Kriging with external drift in a Birnbaum‐Saunders geostatistical model. Stochastic Environmental Research and Risk Assessment, 32, 1517-1530.
[19] Garcia‐Papani, F., Leiva, V., Uribe‐Opazo, M. A., & Aykroyd, R. G. (2018). Birnbaum‐Saunders spatial regression models: diagnostics and application to chemical data. Chemometrics and Intelligent Laboratory Systems, 177, 114-128.
[20] Hao, L., & Naiman, D. (2007). Quantile regression. Thousand Oaks, CA: Sage Publications.
[21] Johnson, N. L., Kotz, S., & Balakrishnan, N. (1994). Continuous univariate distributions. New York, NY: Wiley. · Zbl 0811.62001
[22] Kano, Y., Berkane, M., & Bentler, P. M. (1993). Statistical inference based on pseudo‐maximum likelihood estimators in elliptical populations. Journal of the American Statistical Association, 88, 135-143. · Zbl 0771.62044
[23] Klebaner, F. C., & Landsman, Z. (2009). Option pricing for log‐symmetric distributions of returns. Methodology and Computing in Applied Probability, 11, 339-357. · Zbl 1170.91385
[24] Koenker, R. (2005). Quantile regression. Cambridge, UK: Cambridge University Press. · Zbl 1111.62037
[25] Koenker, R., & Bassett, G., Jr. (1978). Regression quantiles. Econometrica, 46, 33-50. · Zbl 0373.62038
[26] Koenker, R., Chernozhukov, V., He, X., & Peng, L. (2018). Handbook of quantile regression. Boca Raton, FL: CRC Press. · Zbl 1395.62003
[27] Lange, K. (2010). Numerical analysis for statisticians. New York, NY: Springer. · Zbl 1258.62003
[28] Lange, K. L., Little, J. A., & Taylor, M. G. J. (1989). Robust statistical modeling using the t distribution. Journal of the American Statistical Association, 84, 881-896.
[29] Leao, J., Leiva, V., Saulo, H., & Tomazella, V. (2018). A survival model with Birnbaum‐Saunders frailty for uncensored and censored cancer data. Brazilian Journal of Probability and Statistics, 32, 707-729. · Zbl 1404.62125
[30] Leiva, V., Ferreira, M., Gomes, M., & Lillo, C. (2015). Extreme value Birnbaum‐Saunders regression models applied to environmental data. Stochastic Environmental Research and Risk Assessment, 30, 1045-1058.
[31] Leiva, V., Sánchez, L., Galea, M., & Saulo, H. (2020). Local diagnostic analytics for a geostatistical model based on quantile regression. Stochastic Environmental Research and Risk Assessment, 34, 1457-1471.
[32] Leiva, V., Sanhueza, A., Sen, P. K., & Araneda, N. (2010). M‐procedures in the general multivariate nonlinear regression model. Pakistan Journal of Statistics, 26, 1-13. · Zbl 1509.62274
[33] Lucas, A. (1997). Robustness of the Student‐t based M‐estimator. Communications in Statistics: Theory and Methods, 41, 1165-1182. · Zbl 0920.62041
[34] Machado, J., & Mata, J. (2005). Counterfactual decomposition of changes in wage distributions using quantile regression. Journal of Applied Econometrics, 20, 445-465.
[35] Maddala, G. S. (1983). Limited‐dependent and qualitative variables in econometrics. Cambridge, UK: Cambridge University Press. · Zbl 0527.62098
[36] McCullagh, P., & Nelder, J. A. (1983). Generalized linear models. London, UK: Chapman & Hall. · Zbl 0588.62104
[37] Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Introduction to linear regression analysis. New York, NY: Wiley. · Zbl 1274.62016
[38] Nocedal, J., & Wright, S. (2006). Numerical optimization. New York, NY: Springer. · Zbl 1104.65059
[39] Paula, G. A., Leiva, V., Barros, M., & Liu, S. (2012). Robust statistical modeling using the Birnbaum‐Saunders‐t distribution applied to insurance. Applied Stochastic Models in Business and Industry, 28, 16-34. · Zbl 06292429
[40] Rao, C. R. (1948). Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation. In Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 44, pp. 50-57). Cambridge, UK: Cambridge University Press. · Zbl 0034.07503
[41] Rocha, S. S., Espinheira, P. L., & Cribari‐Neto, F. (2021). Residual and local influence analyses for unit gamma regressions. Statistica Neerlandica. 75(2), 137-160. https://doi.org/10.1111/stan.12229 · Zbl 1541.62190 · doi:10.1111/stan.12229
[42] Sánchez, L., Leiva, V., Galea, M., & Saulo, H. (2020). Birnbaum‐saunders quantile regression models with application to spatial data. Mathematics, 8(6), 1000.
[43] Sánchez, L., Leiva, V., Galea, M., & Saulo, H. (2021). Birnbaum‐saunders quantile regression and its diagnostics with application to economic data. Applied Stochastic Models in Business and Industry, 37, 53-73. · Zbl 07887582
[44] Sanhueza, A., Sen, P. K., & Leiva, V. (2009). A robust procedure in nonlinear models for repeated measurements. Communications in Statistics: Theory and Methods, 38, 138-155. · Zbl 1292.62102
[45] Santos‐Neto, M., Cysneiros, F. J. A., Leiva, V., & Barros, M. (2016). Reparameterized Birnbaum‐Saunders regression models with varying precision. Electronic Journal of Statistics, 10, 2825-2855. · Zbl 1348.62220
[46] Saulo, H., & Leão, J. (2017). On log‐symmetric duration models applied to high frequency financial data. Economics Bulletin, 37, 1089-1097.
[47] Scharf, F. S., Juanes, F., & Sutherland, M. (1989). Inferring ecological relationships from the edges of scatter diagrams: Comparison of regression techniques. Ecology, 79, 448-460.
[48] Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461-464. · Zbl 0379.62005
[49] Stehlík, M., Potocký, R., Waldl, H., & Zdeněk, F. (2010). On the favorable estimation for fitting heavy tailed data. Computational Statistics, 25, 485-503. · Zbl 1226.62013
[50] Tapia, A., Giampaoli, V., Leiva, V., & Lio, Y. (2020). Data‐influence analytics in predictive models applied to asthma disease. Mathematics, 8(9), 1587.
[51] Terrell, G. R. (2002). The gradient statistic. Computing Science and Statistics, 34, 206-215.
[52] Vanegas, L. H., & Paula, G. A. (2015). A semiparametric approach for joint modeling of median and skewness. Test, 24, 110-135. · Zbl 1315.62058
[53] Vanegas, L. H., & Paula, G. A. (2016a). An extension of log‐symmetric regression models: R codes and applications. Journal of Statistical Simulation and Computation, 86, 1709-1735. · Zbl 1510.62191
[54] Vanegas, L. H., & Paula, G. A. (2016b). Log‐symmetric distributions: statistical properties and parameter estimation. Brazilian Journal of Probability and Statistics, 30, 196-220. · Zbl 1381.60047
[55] Vanegas, L. H., & Paula, G. A. (2016c). ssym: Fitting semi‐parametric log‐symmetric regression models. (R package version 1.5.7).
[56] Vanegas, L. H., & Paula, G. A. (2017). Log‐symmetric regression models under the presence of non‐informative left‐or right‐censored observations. Test, 26, 405-428. · Zbl 06833486
[57] Ventura, M., Saulo, H., Leiva, V., & Monsueto, S. (2019). Log‐symmetric regression models: information criteria and application to movie industry data. Applied Stochastic Models in Business and Industry, 35, 963-977. · Zbl 07883136
[58] Villegas, C., Paula, G. A., & Leiva, V. (2011). Birnbaum‐Saunders mixed models for censored reliability data analysis. IEEE Transactions on Reliability, 60, 748-758.
[59] Wald, A. (1947). Sequential analysis. New York, NY: Wiley. · Zbl 0041.26303
[60] Waldmann, E. (2018). Quantile regression: a short story on how and why. Statistical Modelling, 18, 203-218. · Zbl 07289506
[61] Wei, Y., Pere, A., Koenker, R., & He, X. (2006). Quantile regression methods for reference growth charts. Statistics in Medicine, 25, 1369-1382.
[62] Weisberg, S. (2014). Applied linear regression. New York, NY: Wiley. · Zbl 1281.62015
[63] Wilks, S. S. (1938). The large‐sample distribution of the likelihood ratio for testing composite hypotheses. The Annals of Mathematical Statistics, 9, 60-62. · Zbl 0018.32003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.